

Carmenta Engine 5.0

General

- Software Development Kit (SDK) for development of interactive geographic applications.
- Rapid visualization and processing of geographic data.
- Fast kernel developed in optimized C++.
- .Net API that conforms with .Net guidelines.
- C++ API.
- All APIs have fast direct access to the kernel, i.e. no middle layer such as COM is used.
- Integrated handling of background maps and dynamic foreground application objects.
- Optimized internally for multi core CPUs.
- Hardware accelerated map visualization that offloads CPU.
- Parallel asynchronous processing that keeps the application's user interface responsive. Map layers may update in separate threads.
- Easy embedding into applications with map controls for WinForms, WPF, QT, Win32 and MFC.
- Optimized for moving large numbers of objects on top of map.
- The kernel has a built-in Profiler for measuring and tuning the performance of map and application layers.
- Built-in tiled map image file cache, suitable for optimizing vector layers on low-end hardware.
- Presentation of map layers and application layers is defined in map configuration files, and can be changed at runtime using the APIs.
- Map configurations are visually defined using the SDK tool Carmenta Studio.
- Component based architecture built around intuitive data flow paradigm.
- Easy deployment using runtime merge modules (.msm) or XCopy deployment.
- Supports over 70 geographic data formats natively.
- Different layers can have different coordinate systems.
- Vector and raster data reprojection is done on the fly.
- Geographically correct spatial calculations such as projection, distance, great circle, scale factors, azimuth / angle calculations etc available for all reference systems.
- Maps can use both locally stored GIS data and layers that are accessed via remote servers (OGC WMS and WCS).
- Multiple windows and views can present the same data with different visualizations simultaneously.

Visualization

- Visualizes points, lines and polygons. Handles different kinds of dashed lines, pattern fills and textures.
- True transparency on all drawing operations, including raster data.
- Anti-aliasing of text, symbols, lines and polygons removes jaggedness in presentation.

- Raster filtering, bilinear or bicubic, improves visualization of scanned maps etc.
- Off screen drawing to bitmaps, files or memory that can be further processed (PNG, GIF, JPEG and BMP).
- Raster symbols from file (TIFF, PNG, GIF, JPEG and BMP).
- Vector symbols (SVG) from file or string.
- Resizable, rotatable vector and font symbols. Halo and outline effects.
- Multiple visualizations on objects such as multiple texts and symbols at a point or line.
- Complex line styles with auto-placement of symbols or labels along lines or in nodes, texts or symbols that clip lines etc.
- Level of detail in 2D with automatic switching on/off of map layers based on scale and/or geographic area.
- Flexible layer handling controls the drawing order of layers in run-time. Ability to mix raster and vector layers in arbitrary order.
- Attribute data controlled visualization, selection and discrimination.
- Animation support with double/triple buffering for smooth window updating when displaying dynamic data and editing objects.
- Automatic label placement of text and symbols prevents overlapping.

Extending with Custom Components

- Developers can "plug-in" their own data reading, processing and visualization code as components that fit seamlessly into the Carmenta Engine data-flow model.
- Custom processing can be developed using .Net or C++ APIs.
- Custom visualization can be developed either using native GDI or OpenGL or by using Carmenta Engine high-level graphics API.
- Custom processing written in Python script can be embedded into map configurations.

Software Development Kit Contents

- Rapid prototyping development tool.
- Carmenta Studio a visual editor for map configurations.
- Carmenta Explorer a map configuration viewer.
- Comprehensive documentation, including tutorials, technical articles and API documentation.
- Sample applications with source code for .Net C# WinForms and WPF, C++ for QT, MFC and Win32.
- Sample map configurations explaining how to do typical world, topographic and street maps.

Geographic databases and formats

- Tile handling with the ability to create seamless map layer presentation from many individual files.
- Can generate low resolution variants ("pyramids") of raster data to improve reading performance.
- Application developers can add support for additional formats with their own data plug-ins.
- Support for spatial database queries.
- File indexing for efficient reading of large datasets.
- Reads directly (conversion is not needed) from a large number of formats:

ADRG	ESRI Shape (.shp) 1 2	MySQL ⁴
ARINC ^{2 4}	ESRI Shape 3D ²	NITF
ASRP	ESRI Binary ADF	NOAA
AutoCAD DXF ⁴	ESRI ASCII Grid	Oracle Spatial ⁴
AutoCAD DWG ⁴	Erdas IMG	OGC WMS
AUX	Erdas LAN/GIS	OGC WCS
BIL	GeoSoft raster	PolGASP
BSQ	GeoTIFF ¹	PNG ¹
BSP	GIF ¹	Raw
BSB Nautical	GridASCII	RPF ⁴
BMP ¹	HDR	SDTS DEM
CADRG ⁴	Intergraph raster	SQL Server 2008 ⁴
CEOS (Spot)	Japanese DEM	TIFF 1
CIB ⁴	C-MAP CM93 ⁴	USGS ASCII
CMRG (PCMap) ⁴	JPEG (.jpg) ¹	USGS DOQ
DEM	JPEG2000	USRP
DFAD ⁴	MapInfo TAB	VTP BT elevation
DTED	MapInfo MIF	VPF
ECW	MFF	SRTM HGT
ELAS	MFF2	WMO GRIB1
Envisat N1	MrSID	WMO GRIB2

¹ Reads and writes

Interaction

- API calls for querying geographic objects at a screen position.
- High-level interaction tool interface that developers may use to "plug in" their own interaction handling.
- Developers may also handle low level event and use API to control interaction.
- "Flying carpet" tool for moving 3D camera.
- Tool for panning, zooming and rotating 3D worlds.
- Tool for panning, zooming and editing in 2D.
- Tool for creating 2D objects.
- Overview window functionality.

Data processing "on the fly"

- Add elevation (z) from elevation raster to 2D objects.
- Buffer zone generation for raster data and vector data.
- Clipping of geographic points, lines, polygons and meshes by geographic polygons or viewing area.
- Connection / desegmentation of lines and polygons.
- Data reduction through line and polygon "thinning".
- Filter objects based on their attribute values with the use of logical expressions.
- Geographic and UTM/MGRS grid generation.
- Generate circle and ellipse objects from point + radius.
- Hill shading with dynamic sun position.
- Isoline calculation, e.g. elevation contours from gridded data.
- Merging heterogenous rasterdata with different resolutions into homogenous data.
- Offset position of objects.
- Rasterizing 2D vector layers.
- Raster value convertions, e.g. floating point to integer, RGB to indexed color and vice versa.
- Reclassification of raster values and vector attributes.
- Reprojection of vector and raster data.
- Resampling of raster data.
- Size calculations polygon area/perimeter and line length.
- Terrain accessibility analysis for terrain vehicles.
- Transformation of line objects to polygons and vice versa.
- Smoothing of line and polygon shapes.

Coordinate Systems and Projections

- Configurable reference systems, projections and geodetic datums, support for EPSG IDs.
- Handles embedded reference system information for the most commonly used geodata formats.
- Supports more than 15 types of projections, including Mercator, Transverse Mercator, UTM, Lambert, Albers and Stereographic.
- Polynomial projections for georeferencing using control points.

System Requirements

Operating Systems:

Windows XP SP3 32-bit, or Windows 7 and Windows Vista SP2 both 32-bit or 64-bit (32-bit applications).

Graphics devices:

Using OpenGL as renderer requires a device supporting OpenGL 1.1. Using DirectX renderer requires a device supporting DirectX 9.1. NVidia Geforce graphics devices are recommended over NVidia Quadro devices.

Development tools:

Visual Studio 2005, 2008 or 2010.

² Uses advanced spatial indexing technology for fast access of large files

³ ECDIS compliant S52 presentation

 $^{^{\}rm 4}$ Functionality available as an additional Carmenta Engine Extension.