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ABSTRACT
Resupply missions are critical logistical parts of modern warfare. Supply vehicles
carrying fuel and ammunition are high-value targets meaning that the route chosen
to approach such a mission is sensitive to risk and a critical time of delivery. We
address the problem of a supply vehicle that needs to find a secure path to link up
with a mobile frontline unit that has a fixed known itinerary. This paper presents
a resupply path planning algorithm, the Adaptive Intercepting Path Planning
(AIPP) algorithm, that balances risk and travel time to find the most suitable
rendezvous point among several. The algorithm generates the least risky route
that meets the rendezvous deadline.
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1. INTRODUCTION

Combat effectiveness relies on a combination 
of precision, fire-power a nd l ogistical support 
from resupplying units. Since the beginning 
of the Russo-Ukrainian war in February 2022, 
Russian troops have unleashed an relentless barrage 
of artillery fire against Ukrainians defenders, 
with the aim of breaking through or stalling 
counteroffensives. The Russian capacity to 
produce and resupply their troops with ammunition 
has taken NATO by surprise [1]. NATO Secretary-
General Jens Stoltenberg has characterized the war 
in Ukraine as ”a battle for ammunition.”

In response to Russian aggression, Ukrainian 
military is utilizing ISR and lethal drones, and 
Western modern weapon systems [2], to strike 
and damage Russian ammunition depots located 
deep within Ukraine territory under Russian 
control [3]. Targeting and eliminating these 
depots is an effective combat strategy for 
disturbing the enemy’s supply lines and 
resource management. Additionally, Ukrainian 
forces have intensified their efforts to target Russian 
resupply vehicles [4]. Both ammunition depots and 
resupply vehicles are critical
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targets as they pose significant risks to the delivery of
essential resources to the combat troops.

Producing large quantities of ammunition is
one challenge, but effectively distributing it to
the troops engaged in combat presents a separate
critical challenge altogether. Furthermore, modern
weapons platforms, include mobile artillery systems,
introduce complexities in both supplying new shells
and identifying suitable rendezvous points, while
ensuring combat effectiveness and readiness. Should
a supply mission fail, the weapon system becomes
ineffective in combat leaving the frontline troops
vulnerable to enemy attacks.

The core objective with this paper is to develop
a path planning adapting algorithm that produces
the best possible routes to meet up with a moving
frontline unit to resupply various necessities. The
adaptiveness of the algorithm lies in its ability
to balance risk and travel speed, ensuring timely
arrival at the frontline units. The algorithm takes
into account a set of risk zones, of various kind,
to minimize risk exposure while trying to find a
punctual path to link up with the moving frontline
units.

Assuming the moving frontline units follow a
predetermined route (a known combat mission), with
specified rendezvous points and associated arrival
time of arrival along its route. For clarity, we shall
refer to this known route as the itinerary of the unit,
while the routes of the supply vehicle shall be called
paths to fit the terminology of graph theory. Note
that these paths need not be physical roads or trails,
just any routes on-road or off-road that the supply
vehicle can use. It is crucial to note that the start and
end times of the itinerary delineate the time window
within which the supply vehicle must rendezvous
with the frontline units. This paper will outline the
methodology for developing such an adaptive path
planning algorithm, considering the dynamics of the
frontline units’ movements, risk considerations, and
the imperative of timely resupply.

2. BACKGROUND
Resupply missions are critical in modern 

conflicts such as the Russo-Ukrainian w ar. Modern 
weapon platforms are highly mobile, resupply 
vehicles need to link up with moving weapon 
systems in hazardous zones to deliver crucial and 
needed supplies. Should a weapon system be left 
without resupplies of essentials like ammunition 
or fuel, its combat effectiveness is compromised, 
leaving the crew vulnerable to therats.

The problem at hand can be precisely formulated 
within the framework of graph theory. Since we 
need to consider both travel time and risk, we have 
a multi-objective optimization problem, but we will 
use scalarization to reduce it to a single-objective 
optimization problem. Since such scalarization 
involves a weighted sum with weights that are hard 
to choose well, a common approach is to let the 
algorithm try many different settings for the weights 
and then ask a human expert to choose manually 
between the alternative solutions.

In our scenario, where each rendezvous has 
a deadline, we can categorize alternative supply 
paths into punctual and tardy ones. By discarding 
the tardy paths, we can automatically identify the 
least risky punctual path. It is an advantage to 
include many alternative rendezvous points since 
they make it easier to find a low-risk punctual 
path, and pathfinding to multiple goal points can be 
done nearly as efficiently as to a single goal. As 
mentioned in the introduction section, we assume 
that the frontline unit has a fixed itinerary that gives 
its future positions in a time interval in which the 
supply vehicle must link up with it.

Our objective is to identify the least risky 
punctual path for the supply vehicle to reach a 
rendezvous position on the fixed itinerary. This 
itinerary remain unchanged because the frontline 
units’ route take precedence, given its assumed 
greater importance. While adjusting the itinerary to 
optimize the resupply mission in terms of speed or 
risk reduction could be beneficial, such consideration
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lie though beyond the scope of this paper but could
be a target for a future research paper.

2.1 Problem Statement
A vechicle is driving on an initial path PI to

a link up location R1, a rendezvous point. Their
mission starts at a timestamp cstart The rendezvous
point R1 has a georeferenced coordinate position and
a deadline for arrival c1. The path PI balances travel
time tI and accumulated risk rI , a set of risk areas has
been defined in the operative region. By following
path PI , the vehicle will arrive at rendezvous point
R1 at time cstart + tI to resupply the moving frontline
unit.

Unfortunately, the vehicle has lost time due to
unforeseen conditions, resulting in PI no longer
being a feasible solution, the vehicle will not link up
the moving frontline unit.

This paper’s solution, the AIPP (Adaptive
Interception Path Planning) algorithm, will
recalculate a new solution, the path PA, using the
supply vehicle’s current location and new starting
timestamp c0. The moving frontline unit has a
known itinerary providing us a set of n possible
rendezvous points {R1, R2, ..., Rn}, where R1 is the
initial rendezvous point.

Figure 1: If the black path to R1 is not punctual, the
AIPP algorithm can find an alternative route (the red
dotted line) by cutting into a risk zone.

Figure 1 illustrates a supply vehicle intercepting
a mobile frontline unit to re-supply ammunition.

The frontline unit has a set of rendezvous points
R1, R2, R3 and R4. The original solution in black
reaches the point R1 at the original time estimate,
although, due to unforeseen road conditions, the
supply vehicle is off track to intercept on time. The
AIPP algorithm finds an alternative path, dashed red
line, that enters a risk area to cut corners and reach
the final destination on schedule to link up with the
moving frontline unit.

The solution PA will minimize total accumulated
risk while still reaching a rendezvous point
punctually. The results can be presented visually
with alternative paths to all rendezvous points it can
reach in time but only the one with least total amount
of risk taken will be considered the winner by the
algorithm.

Figure 2: Here, the AIPP algorithm has found the
safest path by choosing the most suitable rendezvous
point.

Figure 2 illustrates a supply vehicle intercepting
a mobile frontline unit to re-supply ammunition.
Based on figure 1, however, this algorithm optimizes
the alternative (blue dashed) path to select the earliest
rendezvous point (R3) with the least accumulated
risk. This solution takes the least amount of risk and
will link up with the moving frontline unit before it
moves beyond the last possible rendezvous point.

3 THEORY
3.1 Graph Theory

In graph theory [5], a graph G is commonly
written as G = (V,E), where V represents the
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vertices (also known as nodes) and E represents the
edges (also known as links). A vertex is defined as
a position inside of a graph. An edge is defined as a
pair of vertices. In this paper we use directed graphs,
where the edges are ordered pairs of vertices.

Figure 3: A graph G in black and a path P from
vertex S (start) to vertex D (destination) in yellow.

A path (or a route) in a graph is a sequence of
vertices, P = (v1, v2, ..., vn) ∈ V × V × ... × V
such that (vi, vi+1) is an edge of the graph for all
i < n. A path planning optimization problem is
a problem where we seek one or more routes and
where we prefer routes with a lower cost as defined
by an objective function. This is commonly known
as the shortest path problem [6], but we will use the
more general term least-cost path, to avoid confusion
with concrete geometric distances. The objective
function for the least-cost path problem is defined as,∑

1≤i<n

f (vi, vi+1) (1)

This objective function sums the cost of traversing
each edge in the sequence P from v1 to vn where
f gives the cost value measured in arbitrary units
(freely defined). Negative costs make sense in certain
applications but we will assume non-negative costs.

3.2 Solving Multi-Objective Optimization

A multi-objective optimization problem is a
problem where we want to find a solution x that
minimizes multiple objective functions fi over a set
X of possible solutions, where i = 1, 2, ..., k for some
k ≥ 2.

min
x∈X

(f1(x), f2(x), ..., fk(x)) (2)

Multi-objective problems are difficult since each
objective function is a separate dimension. It is often
impossible to find a solution that minimizes each
objective function individually, and there is no linear
ordering of solutions. However, one can construct
a linear ordering by so-called scalarization. This
paper uses two different scalarization methods, linear
scalarization [7] and the ϵ-constraint method [8].

The linear scalarization method creates a
weighted sum of the set of objective functions to
reduce it to a one-dimensional problem,

min
x∈X

∑
i

wifi(x),

where i = 1, 2, ..., k and the wi are weights. The
weights are often normalized to make their sum 1
but that is not necessary; we will use a different
convention where w1 is always 1.

The ϵ-constraint method optimizes a selected
objective function fj by forcing every other objective
function to be less than or equal to a specific
boundary value ϵi,

minx∈X fj(x)

such that fi(x) ≤ ϵi for i = 1, 2, ..., k; i ̸= j.

That is: one accepts a solution x only if it satisfies
all the ϵ constraints, and such solutions are linearly
ordered by their values of fj(x).
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3.3 Moving Frontline Unit
The supply vehicle is linking up with a moving

frontline unit to provide much needed supplies, such
as ammunition and fuel. In this paper, it is assumed
that the frontline unit has a known fixed itinerary,
something along the lines of a combat mission, in
which we know approximately where the frontline
unit will be at a specific time. We assume there are a
total of n rendezvous points each with one timestamp
ci with i = 1, 2, ..., n. The mission is assumed to
start at a timestamp cstart. If no rendezvous point is
reached in time then the resupply mission has failed.
Any path that reaches the rendezvous point in time is
defined as a punctual path.

Given a set of punctual paths, the optimal path
is defined as the path that has the least accumulated
risk.

3.4 Risks
The travel time is not our only concern, since

paths in a battlefield are risky and we want to
minimize risk, too. So, we use two separate functions
that give two costs for an edge from vi to vi+1:

• t(vi, vi+1) gives the travel time,

• r(vi, vi+1) gives the risk.

Travel time can be measured in seconds, for
example, but we will not the specify the unit or
the physical dimension of risk. One could try to
define risk as the probability of mission failure, but
that would lead to difficult questions about whether
the failure probabilities of different edges should be
assumed to be independent. So, we will just assume
that risk is measured by a non-negative number, and
that the total risk of a path is the sum of its edge risks.

This is an example of multi-objective path finding
[7] since we have two objectives and no given
exchange rate between them – that is, although one
can assume a linear exchange rate saying that 60
seconds of travel time is as costly as 42 units of risk,
for example, that would be an arbitrary judgement.

In a general setting, one can have two alternative
paths where one is faster and the other is safer,
and it is unspecified which of them is best without
a given exchange rate. However, in our setting
we assume a deadline for the travel time of each
path, which means it is possible to define the best
alternative without any exchange rate between time
and risk: any path that does not meet the deadline
is unacceptable, and among the others the one with
minimal risk is optimal. Finding such an optimal
path is still a challenge since many interesting
alternatives need to be generated and examined, and
to understand our approach, it is useful to temporarily
ignore the deadlines. The next section will describe
the set of interesting alternatives in a setting without
deadlines: the Pareto front.

It can be useful to handle more than one kind
of risk, but at this theoretical stage we do not have
to introduce more than one cost function for risk.
This is because the theoretical model is fine-grained
and assigns an amount of risk to each individual
edge of the graph, so terrain areas that are extra
dangerous can be modelled by assigning a larger
amount of risk to the graph edges inside them.
However, in Section 4 where we will describe a way
to model terrain and road geodata as a graph, we
will introduce an alternative way to describe risks
via safety factors that are assigned to entire terrain
areas, not to individual graph edges. For simplicity,
our basic algorithm description will then assume that
the same value of the safety factor is used for all
risky terrain areas, but in Section 7.1 we discuss a
generalization to several safety factors.

3.5 Pareto Paths
We start by looking at the base case with one

starting position and one end goal.
The main difficulty in multi-objective

optimization is that alternative solutions cannot
always be ranked. In our case each path has two
different costs, the total travel time t and the total
risk r. Given two paths P1 and P2, can we say
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whether one is definitely better? Yes, sometimes:
if P1 has both shorter travel time and lower risk,
then it is clear that P1 is better than P2, so since P1

is available P2 is not interesting. We say that P1

dominates P2, according to Pareto efficiency [7]. But
if P1 has shorter travel time while P2 has lower risk,
then both can be interesting. The word “interesting”
is informal: an interesting path is one that is not
dominated by any other, and the technical term is
that such a path is Pareto optimal. The set of all
Pareto optimal paths is known as the Pareto front,
and we call them Pareto paths.

Figure 4: Pareto front.

In Figure 4, the diagram shows Pareto paths
plotted using the objective functions as axes, with
travel time along the horizontal axis and accumulated
risk along the vertical axis. The Pareto paths are
illustrated with circles filled in blue while the other,
dominated paths have transparent filling. The dashed
orange line illustrates the Pareto front which is partly
concave around Pareto path 3.

We propose to solve this multi-objective
optimization problem by the common method
of linear scalarization [7], which means that the
multiple costs are converted to a single cost so that
alternative solutions can be ranked. For each path,
we will scalarize its travel time t and its risk r by
making a weighted sum:

t+ wr, (3)

where the non-negative weight w can be regarded as
an exchange rate that converts risk units into penalty
seconds. The absence of a weight for t does not cause
any loss of generality. So, at one extreme, one can
generate bold paths that ignore all risks by setting w
to zero. And at the other extreme, one can generate
conservative paths that avoid all risks by setting w to
infinity and using the convention that ∞× 0 = 0.

A standard algorithm for pathfinding, like
Dijkstra’s algorithm or A*, can now be used to find
the path with the least scalarized cost, and this will be
a Pareto path in the multi-objective setting [9]. The
intention is to vary the value of w to generate several
alternative Pareto paths to each rendezvous point.

One limitation of linear scalarization is that is not
possible to obtain Pareto paths along a concave part
of the front. In figure 4, Pareto paths 1, 2, 4 and 5 can
be found using linear scalarization although Pareto
path 3 cannot. There are methods that can generate
all Pareto paths [10, 11], but they are usually slower
and we have not explored them.

3.6 Pareto Paths With A Deadline
We will now add a deadline, which is an example

of an ϵ-constraint scalarization [8].

Figure 5: Pareto front with the additional deadline
vertical line. Any Pareto path to the right of the
line is considered tardy while anything on the left is
punctual.
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As Figure 5 shows, the introduction of a deadline
divides all paths into punctual and tardy paths, and
the least risky of the punctual paths is the best one.
One will still need a way to generate Pareto paths,
and we still intend to use scalarization with varying
weights to do so, but the advantage of the deadline is
that the results can then be ranked automatically and
the human operator does not need to examine many
Pareto paths manually.

In the example in Figure 5, the least risky
punctual path is Pareto path 3 which cannot be
obtained by linear scalarization since it is on a
concave part of the Pareto front, highlighting the
limitation of our method. Instead, Pareto path 2
would be the least risky punctual path that our
method would obtain.

4 THE AIPP ALGORITHM
This section describes the fundamental parts

of the Adaptive Intercepting Path Planning (AIPP)
algorithm. Based on the theory in section 3, the
algorithm will be introduced in more practical terms.

4.1 From Geodata To Graph
So far, the problem has been described in

terms of graphs, but the algorithm will be easier
to understand in terms of more concrete data
structures. Our prototype implementation assumes
that terrain information will be expressed as three
kinds of aligned rasters (gridded coverage data)
giving elevations, soil strength and roughness, while
the road network will be expressed as line geometries
with attributes. Then we can define the search graph
to have one vertex at the center of each terrain raster
cell. Each edge will then go from one cell to one of
its eight neighboring cells, and both the speed and
the travel time for an edge can be calculated from
information in the rasters and from the capabilities
of the terrain vehicle type. Road line geometries
can either be rasterized into a fourth kind of raster,
or else road line segments can be treated as special
graph edges that link two non-adjacent raster cells.

A risky area can be represented either as a polygon
or as a thematic raster. Such an area is not directly
assigned a risk r as described in section 3.4. Instead,
the areas are assigned a safety factor which is a real
number between 0 for a completely unsafe area and
1 for a completely safe area. For any edge inside
a risky area, its speed will be multiplied with the
safety factor to get a penalized speed, which is used
to calculate the penalized travel time for the edge,
which was written as t + wr in section 3.5. For
example, if the safety factor is 0.25, the penalized
travel time is four times longer than the true travel
time, so each true minute spent traversing such an
area corresponds to a penalized time of 4 minutes,
or we can say that to each true minute will be added
3 penalty minutes. In other words, we do not try to
define a risk r explicitly and then a separate weight
w as in section 3, because the risk r was expressed
in an unspecified unit anyway. To summarize, when
the true travel time is t and the safety factor is s, the
penalized travel time is t/s which is used as the scalar
cost during pathfinding (instead of t + wr in section
3.5). When the safety factor s is 0, the formula
above causes division by zero which we interpret
as producing an infinite cost: in other words, no
paths may ever go through areas where s = 0. A
pathfinding algorithm will optimize for the minimal
penalized time, but it must also calculate the true
travel time, since it would make no sense to compare
the penalized time with the rendezvous deadline.

4.2 Bisecting The Safety Factor Interval
The AIPP algorithm is iterative.
As the first iteration, pathfinding is done with a

safety factor of 0, so that all risky areas are treated as
fatal and therefore avoided. If this iteration gives any
path to a rendezvous position that meets the deadline,
the algorithm can stop with success, since we cannot
do better than meeting the deadline and avoiding
all risks. If there are several paths that meet their
deadlines, we can of course choose the one that is
most ahead of its deadline.
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Otherwise, in a second iteration, pathfinding is
done with a safety factor of 1, so that all risky areas
are treated as fully safe and not avoided at all. If even
this bold approach fails to give any paths that meet
their deadlines, the algorithm can stop with failure.
Of course, in a real-life scenario, one could then try
to adjust the itinerary of the moving frontline unit
or try to find another supply vehicle in a better start
position – but such considerations are beyond our
problem statement.

But suppose that the conservative safety factor
s = 0 gives no punctual paths, while the bold safety
factor s = 1 does give at least one punctual path.
The algorithm should not stop here, because although
we have a punctual path, it could be unnecessarily
risky. That is, we want to find the optimal value for
s, which is the lowest value that produces a punctual
path, and all we know so far is that such a value
exists somewhere in the semi-closed interval (0, 1].
So, we bisect the interval by doing a new pathfinding
with s = 0.5. If this value gives any punctual
path, we know that the optimal value must be in the
semi-closed interval (0, 0.5], otherwise it must be in
the semi-closed interval (0.5, 1]. By iterating this
bisecting process, we can box in the optimal value.

Whenever a value of s gives at least one punctual
path to some rendezvous point, we can discard the
rendezvous points that did not get a punctual path
with s, because the next value of s will be lower
and those points cannot get punctual paths when the
pathfinder becomes more cautious.

But when should we stop bisecting? There is
no absolute answer to that, because even if the
interval has become very short and even if the last
few successful iterations have all produced identical
paths, it is still possible that further bisecting would
find a better path. So, one can either just decide
on some fixed number of iterations in advance, or
else provide an interactive interface that displays the
solutions from each iteration as soon as they are
ready and allows a human operator to stop further
bisections at any time.

An example walkthrough of this algorithm can be
found in section 5.1.

4.3 The Pathfinding Component
So far, the algorithm description has not

mentioned the basic problem of finding vehicle paths
in terrain – we assume that pathfinding is done by
a software component whose details are beyond the
scope of this paper. However, since the pathfinder
is crucial for performance, we can list some basic
requirements and describe our own implementation
briefly.

Requirements:

• The pathfinder must be able to find the
least-cost paths from a start vertex to one or
more goal vertices, where the cost is defined
by a combination of travel time and risk areas
as described earlier.

• To each found least-cost path, the pathfinder
must attach two attributes that give its total
travel time and the travel time spent in risky
areas. This is because neither the AIPP
algorithm nor a human operator is interested
in the weighted cost, which is an artificial
measure just used to steer the pathfinding.

• The pathfinder should handle multiple goals
efficiently.

Our implementation:
We had developed a pathfinding component

earlier [12], but it did not handle multiple goals
well, since it would restart a new search for each
goal. To handle multiple goals, we have replaced our
old A* algorithm that assumed a single goal by the
similar Dijkstra’s algorithm that finds the least-cost
path from a start vertex to all other vertices.

Both A* and Dijkstra’s algorithm needs to use
a priority queue for good performance, but there is

Risk-Adaptive Rendezvous Planning for Resupply Missions in the Battlefield, Jonsson Damgaard et al.
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some disagreement in the literature about whether
the priority queue should support the Decrease-Key
operation which is cumbersome to implement. Our
first implementation used a binary heap for the basic
priority queue and an auxiliary data structure to
support Decrease-Key, but like Chen et al. [13],
we eventually found it more efficient to refrain
from Decrease-Key and instead allow multiple
incarnations of the same vertex in the queue.

Although we have found Dijkstra’s algorithm
to work reasonably well, it is limited by being
sequential. The alternative Bellman-Ford algorithm
can be parallelized but has the drawback that some
threads will often redo work that has already been
done on another thread. There are researchers who
are developing alternative algorithms that can be
massively parallelized on a GPU, for example Wang
et al. [14], but the performance can depend on
statistical properties of the search graph. Fjellborg
[15] has developed such GPU algorithms specifically
for search graphs that arise in terrain routing, but
the statistical connectivity of the graph still matters.
His GPU algorithms can be up to 8 times faster
than Dijkstra’s algorithm for terrain that is easy to
traverse, but are not faster when the terrain is hard to
traverse.

5. RESULTS
5.1 Algorithm Walkthrough

We have used our pathfinder to try out the AIPP
algorithm on a specific example problem. Our study
area is a piece of hilly and mostly forested terrain just
south of Little Norway in California, 13 km south
of Lake Tahoe, where we have access to relevant
geodata in three forms:

• elevation rasters at 20 m resolution,

• thematic terrain type rasters at 30 m resolution,

• road line geometries.

Our pathfinding component can accept the
elevation rasters as they are, but it requires two other

input rasters containing estimates of soil strength
and local roughness on a scale from 1 (best) to 5
(worst). The available terrain type rasters use the
twenty-one classes of NLCD (National Land Cover
Data) which are not enough for highly accurate
trafficability analysis, but we have reclassified them
into soil strength and roughness in an approximate
way, and resampled the results to the same resolution
as the elevations. On the other hand, the twenty-one
NLCD classes are too many to get individual colors
in a background map, so in our screenshots we are
just using four terrain type colors for water, open
terrain, shrubs and forests. (The difference in hue
between open terrain and shrubs can be hard to see
but is not important.)

Risk-Adaptive Rendezvous Planning for Resupply Missions in the Battlefield, Jonsson Damgaard et al.
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Figure 6: Problem example.

Figure 7: AIPP results using safety factor s = 0, iteration one.
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Figure 8: AIPP results using safety factor s = 1, iteration two.

Figure 9: AIPP results using safety factor s = 1/2, iteration three.
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In the study area, we have generated a
southward-going itinerary for the frontline unit by
using our pathfinding component in a preliminary
pass, and for simplicity we used the same vehicle
model as for the supply vehicle. Then we chose
an initial start position for the supply vehicle. See
Figure 6. The deadlines of the rendezvous points A
to E in the screenshots are expressed in minutes since
the operation start, so that they can be compared
directly to the travel times along the supply vehicle’s
paths.

So, what should we use as the risky areas? The
basic risk is that the supply vehicle can be detected by
the enemy, but viewshed analysis or visibility indexes
would be complicated for this example. Instead,
we simply assume that the supply vehicle will be
concealed in a forest but exposed to risk elsewhere.
Since our vehicle model is assumed to go slower
and to handle slopes worse in forests than in shrubs
or open terrain, and since the forested areas have
complex fractured shapes, there will be opportunities
to trade safety for speed or vice versa. On the other
hand, there are also steep areas in difficult terrain
types that are simply untrafficable, so the pathfinder
has limited options. The areas that the pathfinder
regards as untrafficable are indicated by vertical
stripes in Figure 6, since the precise slope values are
difficult to estimate just from the hillshading. But the
stripes are removed from the subsequent screenshots
to reduce the visual clutter.

5.2 AIPP Iterations
Let us now walk through the AIPP algorithm.
In the first iteration we use the safety factor

s = 0 that makes the pathfinder maximally cautious:
only the forest can be traversed. With this setting,
the pathfinder finds two tardy paths to rendezvous
points A and B and none to the other points; see
Figure 7. Each rendezvous point has been placed
inside a forested and trafficable area, but points C,
D and E are probably surrounded by rings of terrain
that is non-forested or untrafficable or both.

Since we have not found a punctual and fully safe
path, we must do a second iteration with s = 1 which
makes the pathfinder maximally bold: it will leave
forests without qualms. Now, the pathfinder finds a
tardy path to A and punctual paths to B, C, D and
E. See Figure 8. Since A cannot be reached in time
even with maximal boldness, we can drop it from
further consideration; the paths to the other points
are punctual but they probably spend more time than
necessary in risky areas. So we bisect to make a third
iteration with safety factor s = 1/2, see Figure 9.
The screenshots for iterations No. 4 to 7 can be found
in the Appendix, and the results from all iterations
are summarized in Table 1, where the safety factor
values are listed in increasing order, with a row above
indicating in which iteration they were tried. Times
are written either as whole minutes or as minutes and
seconds separated by a colon.

As in the screenshots, purple text denotes
rendezvous points with deadlines, black numbers
indicate total travel times for paths, and red numbers
next to them indicate the travel time spent in risky
areas. In addition, the total travel times that are
punctual have got a green background and the
winning alternative has a gray background. A label
”No path” means that the pathfinder failed, while a
dash means that the pathfinder was not invoked.

In the main algorithm description, we did not
formulate a definite rule when the bisections should
stop. But in this example, one can reason that an
8th iteration with s halfway between 3/16 and 7/32
would not find a punctual path to C, because the
path to C had become tardy already in iteration 7
with s = 7/32, and a smaller value of s would make
the pathfinder more cautious, so the total travel time
cannot become shorter. That leaves only B, but in
the last two iterations, the travel time spent in risk
areas differs only by 2 seconds and the total travel
time differs only by 10 seconds, so an 8th iteration
will not be able to improve things much.
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Iteration 1 5 6 7 4 3 2
s 0 1/8 3/16 7/32 1/4 1/2 1

A 50 225 (0) - - - - - 72 (24)

B 95 151 (0) 112 (2:26) 95:08 (5:08) 94:58 (5:10) 91 (6:19) 85 (8:54) 80 (26)
C 120 No path 143 (2:26) 130 (4:37) 122 (6:44) 117 (8:04) 99 (18) 95 (26)
D 140 No path - - - 143 (14) 116 (28) 105 (43)
E 175 No path - - - 179 (16) 120 (44) 117 (49)

Table 1: Summary of algorithm walkthrough. See section 5.2 for details.

6. PERFORMANCE

The computational speed of our implementation
is highly dependent on the size of the area to be
searched. Since we use terrain rasters of 20 meters
resolution, we do not want to retrieve geodata from
an unnecessarily large search area. On the other
hand, if the search area has been too cropped, the
pathfinder could fail to find some useful paths: in our
examples, it could fail to find the two paths to D and
E in Figure 8 that take long detours on roads.

Choosing a suitable area of interest is difficult,
but a simple approach is to put the responsibility on
the human user. For example, one can define the
search area as based on the bounding rectangle of
the start position and all goal positions, but extended
with a user-defined margin. The user could choose
the margin to be a constant distance or use some rule
of thumb like “twice the longest distance from start
to any goal plus 15 km”.

To get a well-defined context for performance
results from our example, we have chosen the search
area to be exactly the area shown in Figure 6, which
is large enough to contain the roads the surround the
central terrain. This area is 20500 × 17260 meters, so
at 20-meter resolution we get terrain rasters of 1025
× 863 cells, corresponding to a search graph of 1025
× 863 = 884575 vertices. If we consider the edges
between two adjacent raster cells to be directed,
we get about 8 times as many edges of that kind.
The search area also contains 844 road line features
that together contain 12638 line segments that our

implementation treats as extra graph edges. On the
other hand, the search area contains many small
terrain areas that are untrafficable by our vehicle
model, so these areas will not be searched by the
pathfinder algorithm.

Using this search area, each iteration of our
algorithm example that used a positive s took roughly
the same time to calculate, in the range from 215 to
275 ms. The first iteration with s = 0 was much
faster at 75 ms, which makes sense since it always
stays in the forest and explores less of the search area.
The processor used is an Intel® Core™ i7-10700K.

For each iteration, our implementation begins by
using Dijkstra’s algorithm to generate the least-cost
path tree to all reachable vertices in the search area;
this tree is a space-efficient representation of all
the least-cost paths. After that, the algorithm must
use the tree to retrace the path to each reachable
rendezvous point, to be able to calculate the total
travel time and the time spent in risk areas, but this
retracing can be done quickly, requiring only 5 to 8
ms in our example. Altogether, the seven iterations
of our example took 1490 ms.

Our pathfinder component is still a prototype and
can be improved further: for example, it is obvious
that Dijkstra’s algorithm does not need to run until
it has found all reachable vertices in the search area,
only until it has reached all the reachable rendezvous
vertices.

Since the total computation time depends almost
entirely on the size of the search area and only
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slightly on the number of rendezvous points, one
can afford to use many rendezvous points. Instead
of manually selecting around half a dozen points,
one can let the algorithm automatically extract
rendezvous points at, say, every 100th meter along
the itinerary. In our example the itinerary is
11926 meters long, so that approach would extract
120 rendezvous points. Based on the measured
performance for 5 rendezvous points, we estimate
that using 120 points instead would increase the
computation by at most 700 ms.

While the number of rendezvous points does not
matter much, a geographically larger search area will
be slower. If the pathfinder is based on Dijkstra’s
algorithm, the complexity will be O(n log n) where
n is the number of terrain raster cells in the search
area, since the number of edges from the raster
is proportional to the number of vertices and the
edges from road line segments should be few in
comparison.

7 FUTURE WORK
7.1 Handling different kinds of risk

So far, our algorithm description and our example
scenario has assumed that there is only one kind of
risk area that can be assigned a uniform safety factor.
But in the example scenario, it could make sense to
claim that while forests are safe and open terrain is
risky, shrubland is somewhere in between, offering
some concealment but not as good as forests.

In our basic implementation of safety factors in
our pathfinding component, it is already possible to
assign different values of the safety factor to different
kinds of risk areas. If this is done, the generated
paths will contain several risk attributes: instead of
only one attribute giving the travel time spent in a
single kind of risk area, the pathfinder will produce
one attribute for each kind of risk. For example, there
could be one attribute for the travel time through
shrubland and another for the travel time through
open terrain.

But if one wants to exploit this in the AIPP
algorithm, some generalizations must be made. We
propose that a human expert should first assign
numeric weights to the different kinds of risks on
a numeric scale that is calibrated to the safest kind
of risk. In our example, shrubland is risky but safer
than open terrain, and the safety factor s used in the
AIPP algorithm description should then be used for
shrubland. Now, if the human expert has decided that
open terrain is only 60% as safe as shrubland, the
generalized AIPP algorithm can communicate that
information to the pathfinding component in each
iteration. That is, whenever AIPP asks the pathfinder
to treat shrubland as having the safety factor s, it will
also ask it to treat open terrain as having the safety
factor 0.6s.

In this way, the AIPP algorithm will be able to
find the punctual path that has the least amount of
weighted risk, but the result will of course depend on
how the risk weights were chosen. We believe this
numeric amount of weighted risk will not be easily
interpreted by a human operator. And that is why
it is important that the results should be displayed
with the explicit travel times through each kind of
risk: to show numbers that are understandable. The
weights assigned to the different kinds of risk will be
subjective, but a human operator can experiment with
different settings to get more suggestions.

7.2 Early Maneuver
The AIPP algorithm generates a solution that

re-balances travel time and risk to account for a new
deadline to reach the meeting between the supply
vehicle and the frontline unit. The link up is done
using a set of possible rendezvous points, where the
rendezvous point that accumulates the least amount
of risk is chosen. Although, an interesting topic at
hand is the idea of an early maneuver.

An early maneuver is defined as the idea of
cutting corners early relatively speaking along the
path in order to catch up on the original path. The
attempt is to create a new solution that re-uses the
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old solution and rendezvous point, however, the
supply vehicle will try to gain speed by cutting into
risk-filled areas. These scenarios assume that the
supply vehicle is losing travel time by avoiding a set
of risk filled zones.

The positive aspect of an early maneuver is to
tackle the possibility of additional unforeseen loss
of traverse speed along said path. Let’s say that the
supply vehicle is cutting corner early, re-routes back
again on the original path and stays on time. Assume
that a bit further down the path, the supply vehicle
slows down again. Since the maneuver to cut corners
was done at an early stage, the vehicle can now more
robustly handle this scenario with more leeway to
cut corners again to reach the link up. If the AIPP
algorithm proposes cutting corners in the endgame
of the path, due to less accumulated risk, the supply
vehicle might still lose additional time along the new
path. This could result in a scenario in where the
interception no longer is feasible.

To do this, one could try and route from current
position to an existing position following the original
path. The new position should be far away enough
such that the time gain is enough to cover the time
loss. In example, the supply vehicle has lost 2
minutes of time due to unforeseen delays, a re-route
is done such that cutting corners through a risk area
is done almost immediately to then fall back to the
original planned path.

7.3 Handling uncertainty
We have assumed that the frontline unit itinerary

is predetermined and that the supply vehicle paths
can be calculated precisely. In reality, the arrival
times to the rendezvous points will of course be
uncertain. For the frontline unit, it seems likely
that the uncertainty accumulates along the itinerary,
so that later rendezvous points have more uncertain
deadlines.

For each problem instance, we think one could
define a more conservative variant where the
frontline unit is assumed to go 5 percent faster and

the supply vehicle 5 percent slower, say. When the
algorithm is applied to the conservative variant of
the problem, the deadlines will be stricter and the
supply vehicle may need to take more exposure risks
to satisfy them. In this way, one would get alternative
paths that reduce the risk of a missed deadline.

7.4 Cooperating Frontline Unit
In this case study, the frontline unit follows a

predetermined itinerary and the supply vehicle has
the full responsibility to adapt. But if the frontline
unit is willing to cooperate by adapting its itinerary,
it may be possible to find a better rendezvous point.
This could require the frontline unit to take more
risks and be more delayed, but the overall risk for
the mission could be decreased. We are looking
into possible modifications to the AIPP algorithm to
achieve this additional flexibility.

8. CONCLUSIONS
Resupply missions in modern combat is of 

upmost importance for mission critical success. 
Both in the aspect of manufacturing large 
quantities of supplies, such as ammunition, but also 
the logistics of getting it out on the frontline. The 
AIPP algorithm has shown to be capable of 
generating punctual paths that enables the link up 
between supply vehicle and mobile frontline unit, 
using a small number of iterations. For example, 
after twelve iterations the final bijected safety factor 
intervals will have become 1/1024, which should 
suffice in practice.

A well-defined final result can be chosen 
automatically by the algorithm as the punctual 
path to some rendezvous point that spends the 
least time in a risky area. This ensures that the 
operational user does not receive an overwhelming 
amount of computer-generated paths to choose from, 
as can happen with multi-objective path planning 
algorithms without deadlines. However, it can also 
be useful to present some alternative punctual paths 
to other rendezvous points, alternatives that were 
found in intermediate iterations.
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We believe that the ability to handle different
kinds of risk areas, as discussed in section 7.1, will
be important in practice. The operator would need
to assign weights to the kind of risks presented,
and changing the weights will result in different
outcomes, adding complexity to the problem. But
this complexity is useful: since the AIPP algorithm
accepts some level of risk, the operator should be
able to pick between the relevant kinds.
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9 APPENDIX

Figure 10: AIPP iteration four.

Figure 11: AIPP iteration five.

Figure 12: AIPP iteration six.

Figure 13: AIPP iteration seven.
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