2025 NDIA MICHIGAN CHAPTER

GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM

<AUTONOMY, ARTIFICIAL INTELLIGENCE, & ROBOTICS>(AAIR) TECHNICAL SESSION

AUGUST 12-14, 2025 - NovI, MICHIGAN

OPTIMIZING FIRING POSITION USAGE FOR SURVIVABILITY AND
EFFECTIVENESS IN ARTILLERY SHOOT-AND-SCOOT TACTICS

Thomas Jonsson Damgaard®, Mikael Rittri, PhD*

!Carmenta Geospatial Technologies

ABSTRACT

In shoot-and-scoot tactics, a common rule is that artillery units should not reuse
firing positions; a more cautious rule is that they should not even pass near an
old firing position when relocating. We use the cautious rule to define a variant of
the traveling salesman problem, where an artillery unit shall use as many firing
positions as possible with minimal travel time and never reuse or pass near an
old firing position. We develop greedy and randomized heuristic algorithms and
test them on some examples, and an auxiliary algorithm that finds a lower bound
of the travel time. We also use “independent sets” of graph theory to reduce a
problem instance to one or several smaller instances. We find that one can get
good solutions reasonably fast by running a randomized algorithm repeatedly
and that problem reduction via independent sets can improve performance.

Citation: T. Jonsson Damgaard, M. Rittri, “Optimizing Firing Position Usage for Survivability and Effectiveness
in Artillery Shoot-and-Scoot Tactics” In Proceedings of the Ground Vehicle Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI, Aug. 12-14, 2025.

1 INTRODUCTION

Artillery has always played an important role in
warfare, including modern warfare. “UAVs haven’t
made artillery irrelevant, but in many cases they have
made artillery systems more effective and precise”,
a quote from Harry Lye [1]. Lye highlights the
importance of artillery systems in suppressing hostile
forces, such as SEAD missions (Suppression of
Enemy Air Defenses) [2]. However, Lye stresses that
they are also vulnerable on the battlefield. We intend

to build algorithms that improve the survivability of
artillery systems in active combat by choosing which
firing positions to use and in what order.

1.1 Shoot-And-Scoot Tactics

The advantages of artillery systems are their long
range and their ability to fire beyond visual line of
sight, allowing them to surprise the enemy. However,
after the first rounds have been fired, the enemy
can use counter-battery radar systems to analyze

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

projectile trajectories to determine their source and
respond with their own artillery, and the response
may take only 5 to 12 minutes [3]]. For this reason,
artillerymen use shoot-and-scoot tactics: First they
find a good position to fire from. Then after firing a
number of rounds, they quickly relocate about 500
meters to a different area to hide from incoming
returned fire. Finally, they will move to a new
position and repeat the process.

By applying shoot-and-scoot tactics, Ukrainians
can operate their howitzer fleet in a safer way
[4]. There are modern artillery systems, such
as the Archer system [S]], that are designed for
speed by using automatic reload systems and rapid
emplacement and displacement of guns, and by being
mounted on flexible terrain vehicles. These are the
key elements of effective shoot-and-scoot efforts.

1.2 Background

In his master’s thesis, Temiz [3]] constructed
an elaborate 3D agent-based simulation of artillery
tactics. The basic concepts are that artillery units
like howitzers are usually combined into a group of
two, three or six units. Such a group is deployed in a
position area that needs to be 1.5 x 3 km for a group
of three units or 3 x 3 km for a group of six units.
The position area should contain several useful firing
positions.

Temiz studied several aspects of shoot-and-scoot
tactics, one of them being how artillery units should
move between different firing positions within a
position area. Of the experts that Temiz interviewed,
a majority said that one should avoid reusing a firing
position. And one expert went further:

“One SME [subject matter expert] mentioned that
using a path that goes through an already fired region
was unwise because it is easier for the enemy to shoot
old targets in a shorter time since they already have
the required calculations for that area.” [3) page 19].

The experts also stressed that one should avoid
following predictable patterns:

“They suggested randomizing decisions when

choosing the next firing position or the path to the
next position.” 3, page 20].

Temiz’s simulation is based on the game engine
Unity 3D, and good routes between firing positions
are calculated from terrain conditions by a Unity
asset for pathfinding by Aron Granberg. The
simulation uses a sophisticated algorithm to give the
firing positions scores that are used when choosing
the next position to scoot to. A position will get a
lower score after it has been used, which decreases
its probability of being reused later. But there is no
strict prohibition of reuse, since the firing positions
are a finite resource. And the pathfinder will not
avoid passing through or near a used position when
planning a path to another position.

Although Temiz focused on movements within
one position area, the entire position area may
eventually become too threatened so that the entire
group needs to relocate to another position area. So,
one could distinguish between

* “micro-scooting”, where individual artillery
units relocate to a different firing position
within the same position area, and

* “macro-scooting”, where an entire artillery
group relocates to a different position area.

Other related work is discussed in Section

1.3 Purpose

We have focused on the expert advice that Temiz
quoted, that an artillery unit should not pass through
or near a previously used firing position when
relocating to another position. To our knowledge,
the algorithmic implications of this advice have
not been studied before. The reason why Temiz
did not implement such a rule in his simulation
could be that counter-battery radar will not detect
an artillery unit that is just relocating. However,
we think the rule has become more important in
recent years due to modern military drones. For
example, after the enemy has located a firing position

Page 2 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

by counter-battery radar and attacked it, they may
send a surveillance drone to the position to inspect
the damage and to loiter there in the hope of finding
the artillery unit.

Since we want to define a computational problem
in a way that is simple enough to formalize, we
will not distinguish between “micro-scooting” and
“macro-scooting”. Instead, we just assume that a
set of predetermined positions are known, which we
consider to be geographical points. We also assume
that the terrain around the positions is known and
that the terrain capabilities of an artillery vehicle are
known. Then, the computational problem can be
described informally as follows:

1. Which of the positions shall be visited and in
what order,

2. to maximize the number of positions used and
minimize the travel time between them,

3. while avoiding the risk of either reusing or
passing near old positions?

The definition of “near” is based on a risk radius
chosen by a human expert. In the special case
of a zero risk radius, our problem is essentially
the well-known traveling salesman problem (TSP),
so we call our problem the traveling artilleryman
problem (TAP). The traveling salesman problem is
NP-hard, meaning that optimal solutions cannot be
found in polynomial time if P # NP as is widely
believed, and the traveling artilleryman problem
must also be NP-hard since it is a generalization.
Our ambition is to develop heuristic algorithms that
can produce good solutions in reasonable time for
problems of modest size, say about 20 positions.

According to point 2 above we will minimize the
travel time, but travel time is just one example of
travel cost. One could minimize fuel consumption
instead, or some weighted sum of different travel
costs.

1.4 Limitations
To keep the problem statement manageable, we
assume the following:

1. There is only one artillery unit that is moving.
The problem formulation should still be useful
for a group of vehicles that can travel together,
but not if the group needs to split up along
parallel paths to the next position.

2. According to the problem statement, one
should minimize the total travel time between
all positions, which is not necessarily the same
as minimizing the total time spent leaving the
risk circle of a recently used position — which
can be regarded as more important. But in
practice, we believe these two measures are
highly correlated.

3. The level of risk is binary. That is, the artillery
unit must not travel at all within a risk circle
around a previously used position, but full
safety is assumed just outside the risk circle.
This means that our algorithms might find an
optimal solution for one risk radius, failing
to see that a much better solution would be
possible with a slightly shorter radius. The user
could try several values for the radius, but it
may be better to refine the problem statement
with a level of risk that varies with distance;
see Section[10.3

4. Our problem statement assumes that all
positions are equally useful, but they can
differ in quality. If the quality can be
represented by a single numeric weight, one
could try to maximize the sum of the weights
of the used positions, instead of just the
number of positions used. But with several
different position criteria — see Section [0.1] —
one would get a multi-objective optimization
problem where it can be hard to rank solutions
or explore a large enough subset of the
Pareto-optimal solutions.

Page 3 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

1.5 How this Paper is Organized

Section [2] reviews the basics of graph theory.
Using graph theory, Section [3] defines the traveling
artilleryman problem (TAP) formally. Section 4]
presents some simple heuristic algorithms for the
traveling salesman problem and discusses whether
they can be adapted to TAP. Two adaptations, Nearest
Neighbor and Random Neighbor, are described in
Section [5] Section [6] gives the results of trying
the algorithms on some TAP instances. Section
describes a way to preprocess TAP instances whose
risk radius is long enough to cause conflicts between
alternative positions. Section [§] combines the con-
flict analysis and the two adaptations into one
main algorithm. Section E] describes related work,
Section suggests future work, and Section
concludes. Notation and acronyms are summarized
on the last page.

2 GRAPH THEORY

This section describes the basic concepts of graph
theory [6]; we will introduce more concepts as
needed later in the paper.

In graph theory, a graph G consists of a pair
(V,E) where V is a set of nodes, also known as
vertices, and F is a set of edges between nodes, also
known as links or arcs.

Nodes are just atomic objects; in a diagram they
are usually shown as dots.

An edge connects two nodes. In a directed graph,
an edge can be represented by an ordered pair of
nodes (u, v), but in an undirected graph, an edge can
be represented by an unordered pair of nodes {u, v}.
Diagrams usually show edges as lines, with arrow-
heads if they are directed.

There is often a convention that an edge cannot
connect a node to itself.

In a weighted graph, the nodes or the edges
are assigned numeric weights. So, there are edge-
weighted graphs and node-weighted graphs.

A path (or a route) in a graph is a sequence of
nodes [vy, vg, ..., v, such that (v;, v;11) is an edge of

G . p

r. -. .
#
a
E ®
2

Figure 1: A black graph G and a yellow path P from node S
(source) to node D (destination).

the graph for all ¢ < n; see Figure [l In an
edge-weighted graph, the weight of a path is defined
as the sum of the weights of the edges in the path.
In the rest of the paper, we shall use the term “cost”
instead of “weight”, and we can write the cost of an
edge between u and v as c(u, v).

In the single-pair shortest path problem we seek
a least-cost path from a given source node to a given
destination node; this is often solved by the A*
search algorithm [/]. In the single-source shortest
path problem we seek least-cost paths from a given
source node to all other nodes; this is often solved
by Dijkstra’s algorithm [8, section 24.3]. The terms
“shortest path” and “path length” are often used
instead of “least-cost path” and “path cost”, but this
is a metaphoric usage of “length” that would be
confusing in our setting, since our graph nodes will
represent geographic points and the literal distance
between them differs from the travel cost, which will
be the travel time in our examples.

In most applications, edge costs are nonnegative
numbers and they satisfy the triangle inequality,
which says that if three edges connect three nodes
u, v and w, it is always the case that

c(u,w) < c(u,v) + c(v,w)

Page 4 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

2.1 How Graphs will be Used in this Paper

In this paper we will use two kinds of graphs: a
terrain graph and a conflict graph.

The terrain graph is a directed edge-weighted
graph that represents the terrain for artillery
operations and can be based on raster data for terrain
elevations, soil strength, etc., with a node for each
raster cell (pixel). Two raster cells that are adjacent
(side by side or diagonally) can be connected by
an edge, whose cost is the travel time along the
edge for the artillery unit. The terrain graph should
also include information about roads that can be
used by the artillery unit. This can be done in two
ways: one can rasterize the roads, treating asphalt
as just another soil type, or one can convert road
line segments to extra graph edges that connect two
non-adjacent raster cells. Our software module for
pathfinding uses the latter approach, which has the
advantage that bridges and tunnels can get a correct
representation.

The positions mentioned in the introduction will
be represented as a small subset of the terrain nodes.
However, the positions will also be used as the only
nodes of a smaller undirected graph without weights,
the conflict graph, where two positions are connected
by a conflict edge if they are closer to each other than
the risk radius.

3 TRAVELING ARTILLERYMAN PROBLEM

This section gives a formal definition of the
traveling artilleryman problem (TAP) in terms of
graph theory.

3.1 Input
A problem instance consists of five parts:

* A directed graph known as the terrain graph
where each edge has a nonnegative cost.

* A subset of the graph nodes, the positions.

* One special position, the start position.

* A function R that maps each position p to a set
of nodes R(p), the risk circle for p, such that
p € R(p).

* One special node, the final safety node, which
must not be in any risk circle.

3.2 Output

A solution to the problem consists of three parts:

* An ordered sequence of positions [p1, ...,]
where p; is the given start position; these are
the used positions.

* A path in the terrain graph, known as a leg,
from p; to p;1 foreach i < m.

* A final path in the terrain graph from p,, to the
final safety node. This path is not a leg, but it
can be called the final escape path.

3.3 The Risk-Circle Constraint

To be valid, a solution must satisfy the risk-circle
constraint:

* For all © < m, the nodes in the leg from p; to
pi+1 must not be in any risk circle R(py) for
any k < 17, and the nodes in the final escape
path must not be in the risk circle of any used
position except the last.

A consequence of the constraint is that a used
position p must not be in the risk circle of any
position that has been used earlier, because there
must always be a path away from p whose nodes
avoid all such risk circles, and p is the first node of
any such path.

The term “feasible” is more common than “valid”
in optimization literature, but we think ‘“valid” is
more clear. But in the rest of the paper we usually
omit “valid” for brevity.

Page 5 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3.4 Ranking Valid Solutions

The cardinality of a solution is m, the number of
used positions. The cost of a solution is the sum of
the costs of all edges in all legs, but remember that
the final escape path is not a leg. We ignore the cost
of the final escape path due to a basic assumption
that the artillery unit is safe when it is not in any risk
circle of a position that has been used. The reason for
having the final safety node in the problem statement
is just to disallow solutions that arrive at a dead end
without a safe escape path, as in Figure

The solutions are ranked by cardinality and cost
in a total lexicographic order:

* Of two solutions with unequal cardinality, the
solution with the higher cardinality is better.

* Of two solutions with equal cardinality, the one
with the lower cost is better.

We think this order makes sense in practice, although
one could construct an extreme problem instance
where a solution wins by using only one position
more than another solution with much lower cost.

As usual in the optimization literature, we call an
algorithm for TAP exact if it finds optimal solutions
and heuristic if it finds suboptimal solutions.

3.5 Allowing any Start Position

In the basic version of TAP as described above,
the start position is prescribed as part of the input.

We can get a more relaxed version of the problem
statement by not prescribing a start position, instead
allowing the algorithm to choose where to start.
This version can be called TAP with arbitrary start
position. However, we can solve the relaxed problem
if we can solve the basic problem. That is, if we have
implemented a good algorithm for the basic TAP, we
could simply run it repeatedly for each position to
find alternative solutions to the relaxed problem and
then choose the best alternative.

3.6 About Risk Circles

In practice, we intend to study only problems
where nodes are geometric points on a 2D surface
and the function R(p) returns the set of nodes closer
to p than a fixed distance, the risk radius. In the
formal problem statement, it was simpler to require
R as part of the input, which is a way to say that
there must be an unambiguous way to check whether
a node is within a risk circle around a position.

4 THE TRAVELING SALESMAN PROBLEM

Our traveling artilleryman problem (TAP) is a
generalization of the well-known traveling salesman
problem (TSP), which is an NP-hard problem in
graph theory [9, 10, [11]. Given a graph, directed or
undirected, in which any pair of distinct nodes are
connected by an edge with a nonnegative cost, we
seek the path of minimum cost that passes through
all nodes and finally returns to the start node. The
canonical example is a salesman who wants to visit a
set of towns with minimal travel cost.

In this section we will review TSP in the hope of
finding ideas that can be applied to TAP. If there were
no risk circles in TAP, one could use an approach
we can call legs as edges. This approach interprets
the positions of a TAP instance as the nodes of
a TSP problem, and the least-cost legs between
the positions as the edges of the TSP problem.
Unfortunately, the risk circles in TAP make the
least-cost edge between two positions dependent on
which other positions have already been used in the
solution, since the risk circles around such positions
may invalidate some otherwise useful legs. Still,
there are some TSP algorithms that can be used with
the legs-as-edges approach.

4.1 Brute-force Search for TSP

There is a naive brute-force search algorithm to
solve a TSP problem exactly: one can generate all
permutations of the nodes and then pick the best. A
set of n nodes has 1 X 2 X ... x n = n! permutations
(n factorial). But since TSP is usually formulated

Page 6 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Table 1: Naive brute-force search for TSP.

n time
10 0.2 ms
12 0.02 s
14 3s
16 11 min
18 49 h
20 704 days
22 810 years
24 409 600 years
26 0.25 billion years
28 173 billion years
30 | 140000 billion years

for undirected graphs, each permutation has the same
cost as its reversal, and since TSP requires a closed
loop, each solution has the same cost as any cyclic
permutation of it. This means that the number of
permutations to be checked is only n!/(2n), but
that is still a rapidly growing function. Let us be
optimistic and assume that one permutation can be
evaluated in 1 nanosecond, then Table [I] shows the
required execution time for graphs of different sizes.
Since the sun will become a red giant in only 5 billion
years, we cannot hope to find the optimal solution
for a TSP instance of more than 27 nodes by naive
brute-force search.

However, if we have somehow already found a
good tentative solution, we can use a refined variant
of brute-force search to search for a better solution.
Let us say that we have 26 nodes named a, b, ...,
z and that we generate permutations in alphabetical
order. At some point we will start generating all
permutations that begin with the 13-letter prefix
thequickbrown, for example, and 13 more letters
are needed so there are 13! = 6227020800 such
permutations. If the cost of the prefix alone is greater
than the cost of our good solution, then we can skip
all these permutations, since edge costs are assumed
to be nonnegative. One can say that this trick uses
zero as a lower bound of the cost of traversing the
remaining nodes, and one could refine it further by

using a tighter lower bound, for example the sum of
the costs of the 14 cheapest edges that remain unused.

4.2 Sophisticated Algorithms for TSP

Since brute-force search can solve only small
TSP instances, it is impressive that researchers using
better algorithms have found a provably optimal
solution for a TSP instance of 24 978 nodes (the cities
of Sweden), even though they used more than 8 years
of CPU time [12]].

For more practical use, there are modern heuristic
algorithms that in reasonable time can solve TSP
instances with millions of nodes to near-optimality,
with a high probability of producing solutions only
2 to 3 percent worse than the optimal [11]. This
solution quality is higher than the usual performance
of heuristic algorithms for NP-hard problems [10].
You may wonder: how can anyone know how close
to optimality such a solution is, if the optimal
solution is not known? The answer is that there
are also reasonably fast algorithms that can produce
a surprisingly tight lower bound for the cost of
the optimal solution, the Held—-Kamp lower bound
(10, 13].

But since we do not know how to adapt such
sophisticated algorithms for TAP, let us now look at
the two simplest heuristic algorithms for TSP.

4.3 The Greedy Algorithm for TSP

An algorithm is called greedy if it makes choices
in a shortsighted way and never backtracks to undo
a previous choice. We shall describe an algorithm
known as the greedy algorithm for TSP [10], even
though other algorithms for TSP are also greedy. We
write Greedy with a capital ‘G’ to indicate that we
mean this particular algorithm.

1. Start by choosing the least-cost edge.

2. Then choose the least-cost edge of the
remaining ones, even if it does not share any
node with any previously chosen edge.

Page 7 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3. Continue in this way, but never choose an
edge that would block the chosen edges from
eventually becoming a complete solution. That
is, never choose an edge that would make three
chosen edges connect to the same node, or an
edge that would create a closed loop that fails
to include all nodes of the graph.

The Greedy algorithm cannot be used for TAP
by treating legs as edges, because the risk-circle
constraint makes the least-cost leg between two
positions depend on which positions have been used
before. And since the Greedy algorithm does not
choose the edges in the order they will be traversed,
the algorithm does not know which risk circles to
avoid when constructing a leg.

But we can adapt the Greedy algorithm to find a
lower bound of the cost of a TAP solution of a given
cardinality m. We can do that via the legs-as-edges
approach by making the algorithm overgreedy: that
is, it shall ignore the prohibition of blocking edges in
paragraph 3, and when calculating the least-cost leg
between two positions it shall ignore risk circles of
other positions. This variant is “overgreedy” in the
sense that it is usually too greedy to produce a valid
solution: it will just produce a set of legs that may
be disconnected or form many small loops. But any
valid solution of cardinality m must contain m — 1
legs, so when the overgreedy algorithm has chosen
m — 1 legs, the sum of their costs must be a lower
bound of the cost of any solution of cardinality m.
This algorithm may not give a tight lower bound, but
its simplicity makes it attractive. For examples and
more details about the algorithm, see Section @

4.4 Nearest Neighbor for TSP

Another TSP algorithm known as the Nearest
Neighbor algorithm (NN) is also greedy in the
general sense but collects edges in a different order.

First, a terminology warning. The colloquial
meaning of “nearest” is minimum distance, but
in Nearest Neighbor for TSP this is just the

metaphorical usage of graph theory where the
“distance” along a graph edge should be understood
as the cost of the edge (see Section [2)).

The Nearest Neighbor algorithm is simple:

1. Start by choosing a random start node and put
it in an ordered list of nodes.

2. Repeatedly choose the least-cost edge from the
last node of the current list and append its
destination node to the list. But don’t choose
an edge that returns to any previous node of
the list, unless we are choosing the final edge
to close the loop.

Instead of choosing a random start node, one
could run the algorithm repeatedly starting from each
node in turn, and then choose the best solution. This
approach is known as Repeated Nearest Neighbor.

For graphs where the edge costs satisfy the
triangle inequality, Nearest Neighbor for TSP will
seldom produce a solution that is more than twice
as costly as the optimal one [10]. And since the
algorithm chooses the edges in the order they will
be traversed, it can easily be adapted to solve TAP
problems with the legs-as-edges approach.

5 BASIC TAP ALGORITHMS

This section describes a Nearest Neighbor
algorithm for TAP and a randomized variant.

5.1 Nearest Neighbor for TAP

The Nearest Neighbor algorithm for TAP is
similar to the one for TSP.

1. Put the prescribed start position in an ordered
list of positions.

2. Repeatedly choose the least-cost valid leg from
the last position to a valid destination position
and append the destination position to the list,
until no more valid positions can be reached.

Page 8 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

3. If the final escape node can be reached by a
valid path from the last position, terminate by
success, otherwise by failure.

In step 2, a leg is valid if it avoids all risk circles
of previous positions in the list. We cannot demand
that a valid leg also avoids the risk circle of the
current position since it starts from its center; instead
we say that a destination position is valid only if it is
outside the risk circle of the current position.

In step 3, the final escape path is valid if it avoids
all previous risk circles. Again, we cannot demand
that it also avoids the risk circle of the last position
since it starts from its center.

5.2 Random Neighbor for TAP

Random Neighbor is a simple variation of
Nearest Neighbor.

The difference is that for each choice made
in step 2, we do not necessarily choose the
least-cost valid leg from the last position to another
valid position. Instead, we choose between the
possible legs randomly, using probabilities that are
constructed from the leg costs by a bias function. To
keep some of the useful greed of Nearest Neighbor,
the bias function should give higher probability
to legs of lower cost. The average solution
quality of Random Neighbor may be worse than
Nearest Neighbor, but we can run Random Neighbor
many times and hope to get some good solutions
eventually.

This idea of balancing greed with randomness
is one cornerstone of GRASP, Greedy Randomized
Adaptive Search Procedures, which is a meta-
heuristic — that is, a set of general design principles
for heuristic algorithms. GRASP is described
by Resende and Silva [14] who list eight main
approaches to achieve a good balance, one of them
being the bias functions of Bresina [15]].

The other cornerstone of GRASP is using local
search to improve the generated solutions. Local
search is excellent for TSP [[10, [11] but we have not
tried to implement it for TAP; see Section (10.1

6 EXPERIMENTS WITH TAP ALGORITHMS
Since TAP is a generalization of TSP and
therefore NP-hard, we do not care about worst cases
or asymptotic complexity. We just hope to develop
algorithms that can handle typical problem instances
of modest size by finding solutions that are good but
not necessarily optimal. This section describes our
practical experiments on some problem instances.

6.1 Problem Examples

We tried to find realistic problem examples in the
literature. Although Temiz made some screenshots
from his model [3, figures 4 and 5], he did not publish
example coordinates of firing positions. Instead,
we generated problem instances from the 40 case
points recommended by Quinn and Kunkleman [16],
of which the 20 westmost ones are intended for
friendly artillery and the 20 eastmost ones for enemy
artillery. In Figure [2] we have used our own software
to generate a map of the same area as is shown in
Quinn and Kunkleman’s Figure 3, and we added
black dots for the 40 case points in their Table 3.
We labeled their 20 friendly case points by a, b,
..., t and their 20 enemy case points by A, B, ...,
T. The 20 friendly case points are in the northwest
of a large area without major roads; this is the
Hohenfels Training Area in Germany. The area does
contain some minor roads that we do not show in
our screenshots, because we think they would not
provide any benefit for a tracked vehicle. You can
read more about Quinn and Kunkleman’s work in
Section[9.11

The case points of Quinn and Kunkleman are
not ideal for realistic examples of the traveling
artilleryman problem since they represent the centers
of position areas, whereas shoot-and-scoot usually
refers to scooting between firing positions inside one
position area. Still, we believe their 40 case points
have an interesting geographic distribution and are
suitably many, so we think they give examples that
are realistic enough.

Page 9 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 2: A scenario from Quinn and Kunkleman [[16].

Our first problem instance, which we call W-20
(W for West), is based on the 20 friendly positions
with a final safety node in the northwest, with a as
the prescribed start position, and with a risk radius
of 2 km, enough to make many risk circles contain
positions other than their own center. See Figure 3]

Our second problem instance, K-20, is based on
the 20 enemy positions with K as the prescribed start
position, also with a risk radius of 2 km, and with
a final safety node in the southwest. As a slight
variation we defined a third instance, D-20, which
differs only in starting from D. These instances are
shown together in Figure @] (Screenshots of the
eastern examples are shown in a more zoomed-out

scale in order to fit.)

We did not have strong preferences for particular
start positions, but first we chose a and K for two
reasons:

1. Neither of them contains another position in its
risk circle, so using them does not exclude any
other position.

2. Each of them is relatively far away from its
two nearest neighbors, so the two legs to
these neighbors are probably costly. Therefore,
a solution that starts at one of these should
benefit by having to use only one of these
costly legs instead of both.

Page 10 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Later, we selected D, which is also somewhat

isolated, as an alternative to K, because we dis- Fiﬁal
covered that the Nearest Neighbor algorithm gives bt
an excellent solution when starting from K, which we = 'Z' y

node

suspected was an atypical result.

The precise location of a final safety node will
not affect the cost of the solutions to a TAP instance,
since the cost of the final escape path is not added
to the solution cost. The idea is to place the final
safety node somewhere in accessible terrain outside
the convex hull of all possible risk circles, to disallow
solutions that reach a dead end as in Figure

a
Starte

{ Aol
L A=0

L s
L=
L=

To fully define our problem instances, we
also need a terrain graph. We have chosen an
approach that is convenient for our experiments,
where the terrain graph is constructed internally by
our software module for pathfinding in terrain, the
TerrainRouteOperator [[17]. More specifically, the =
structure of the terrain graph is based on elevation
data, terrain type data and road data, and the cost
for each edge is calculated from these geodata and
from a description of the vehicle’s terrain capabilities — -
and road speeds. We have let the terrain graphs be
bounded by the two black rectangles in Figure [2]
which also appear as the black frames of most of our
screenshots (some initial experiments had indicated
that the pathfinder should never need to go beyond
these rectangles). Letting our pathfinder software
construct the terrain graph is convenient for us, since
we can then use it to find the least-cost leg from one A
position to another. :

L2
*3
LN

L s

0
T
ﬂ,l

& rt

Figure 3: The TAP instance W-20.

L L=

Start

L

However, this choice has the drawback that
other researchers will not be able to reproduce the " '
same terrain graph exactly even if they have the *H Gel
same geodata, since they would need to know an A
impractical amount of our implementation details. If " 1 M o0 P
we ever would like to publish our problem examples | =, .
as public benchmarks, we would need to define a Final o5 I
machine-readable export format for the internally safety
generated terrain graph and the other parts of the | ““‘d‘é
problem input.

We have used several geodata sources which are Figure 4: The TAP instances K-20 and D-20.

Page 11 of

Optimizing Firing Position Usage for Survivability and Effectiveness
in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

credited in Section Of these, the CORINE
land-cover dataset is somewhat problematic since it
has many more categories than the number of colors
that the human eye can distinguish in a hillshaded
background map. So in our screenshots we have
grouped the original categories into only seven
simplified categories; see the legend in Figure
Some input to our pathfinding software is based
on the original CORINE categories, but they must
be converted to soil strength classes and roughness
classes [17,118] in a way that is just an estimate.

Furthermore, we do not know the precise terrain
capabilities of the howitzer models studied by Quinn
and Kunkleman, so we have used terrain capabilities
that describe another kind of tracked vehicle that
is much smaller. Our vehicle model may be too
optimistic about trafficability in forest, and in the
areas of interest there are only some small scattered
parts that are considered untrafficable. But our path-
finder tends to avoid forests since they are assumed
to slow the vehicle down.

6.2 Resolution and Computation Time

In our experiments, we have used a terrain data
resolution of 3x3 arc seconds, corresponding to
about 60x93 meters at the latitude of Hohenfels,
which is coarser than what is recommended for our
pathfinding software.

One effect of the coarse resolution is that
the terrain graph gets fewer nodes and edges,
which gives faster computations, and you should
remember this when reading about our computation
times (which were measured on an Intel® Core™
17-10700K processor). Higher resolution would
cause slower computations, or to be more precise:
terrain graphs are sparse since the number of edges is
proportional to the number of nodes, and for sparse
graphs the time complexity of Dijkstra’s algorithm
(used by the pathfinder) is O((|E| + |V])log |V]),
where |E| is the number of edges and |V| is the
number of nodes.

Another effect of the coarse resolution is that
the generated terrain paths will be less realistic,
an effect that is similar to the uncertainties about
terrain types and vehicle capabilities (mentioned in
the previous subsection). Fortunately, for the purpose
of experimenting with TAP algorithms it should not
matter how well the terrain paths match the reality
around Hohenfels: we just want the basic structure
of the terrain graph to be typical for TAP instances.

For operational use, though, the resolution would
probably be much too coarse, since the fastest path
from one position to another can be very sensitive
to resolution. For example, a terrain feature that is
long and narrow can be present in high resolution
but missing in low resolution. If the feature is an
obstacle like a river, pathfinding in low resolution
could generate an impossible path across the river,
and if the feature is an opportunity like a piece of land
between two lakes, then pathfinding in low resolution
would overlook the opportunity.

Our pathfinding software for terrain vehicles [[17]]
is based on a traditional Swedish terrain classification
system [18] for which a resolution of 10 to 25
meters is recommended, and our implementation
assumes that the terrain vehicle is smaller than
the resolution. If one would like to use a very
high terrain resolution, then different wheels of the
vehicle could be on different slopes and soil types,
which would make the analysis difficult: one would
need more detailed terrain classification systems and
better vehicle modeling as in the Next Generation
NATO Reference Mobility Models [19].

6.3 Should we Precompute Leg Cosis?

When implementing our algorithms for TAP, we
faced a basic design decision: should leg costs
be precomputed? Of course, doing so would be
pointless for Nearest Neighbor since this algorithm
is run only once and requests each leg cost at most
once. But precomputed leg costs could make sense
for Random Neighbor which is intended to be run
many times.

Page 12 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

If we do not precompute leg costs, the compu-
tation time of our TAP algorithms will be dominated
by our pathfinder module. In this module, paths in a
terrain graph are found either by A* search (when
there is one goal node) or by Dijkstra’s algorithm
(when there are several alternative goal nodes). In
both cases, most of the computation time is spent on
managing a large priority queue of nodes, the frontier
of the search. There is no doubt that the Random
Neighbor algorithm for TAP would become much
faster if it could look up leg costs in a precomputed
table.

The difficulty is that the required size of the
precomputed table grows exponentially with the
number of positions in a TAP instance. To be more
precise, let n be the number of positions, then we
need to compute the least-cost leg for each of n? — n
ordered pairs of distinct positions: that is only a
quadratic number of pairs. But for each pair, the
least-cost leg can depend on the used/unused status
of the other n — 2 positions, and we do not know
that status when the table is calculated. So, for each
pair we have to calculate several alternative least-cost
legs, one leg for each of the 2”2 states in which the
other n — 2 positions can be. Thus, the table must
contain (n? — n)2"~2 leg costs.

We must also consider the time it takes to fill the
table. Let us assume that for a particular used/unused
state for all n positions, Dijkstra’s algorithm will
need 0.3 seconds to find the least-cost legs from
one position to all others; this estimate is based on
our implementation (but see the disclaimer in the
previous section). For each of 2" states we would
need to run Dijkstra’s algorithm n times, one for each
position, so the total time would be 0.3n2" seconds.

Table 2| gives examples of the required compu-
tation time and table size (assuming 2 bytes per leg
cost). The main difficulty is the long computation
times, which indicate that precomputed leg costs will
not improve operational use of the Random Neighbor
algorithm for TAP.

However, for problem instances that are small

Table 2: Estimates for a table of leg costs.

n size time
7| 26KiB 42 min
8 7 KiB 10 min
9 18 KiB 23 min
10 45 KiB 51 min
11| 110KiB | 1 h52 min
12 | 264 KiB 4 h
14 | 1.4MiB 19h
16 | 7.5 MiB 87h
18 | 38.2 MiB 16 days
20 | 190 MiB 72 days
22 | 924 MiB | 320 days
24 | 43 GiB 3.8 years
26 | 20.3 GiB | 16.6 years
28 | 94.5 GiB 71 years
30 | 435GiB | 306 years

enough, precomputed leg costs may still be useful
together with brute-force search (Section H.T)
adapted for TAP. This design is unlikely to be fast
enough for operational use, but could be useful
in an academic setting to find optimal solutions
for benchmark instances, which would tell us how
close to optimality the heuristic algorithms are.
Although the problems must be “small enough” for
this approach, we will demonstrate in Section [/| that
some TAP instances can be reduced to smaller ones
with the same optimal solutions.

6.4 Overgreedy Lower Bounds

It is hard to judge the solution quality of a
heuristic algorithm when the optimal solution is
unknown, but a lower bound of the cost of an optimal
solution will give some information about the quality.
So, let us begin by finding lower bounds for our
TAP instances using the overgreedy algorithm of
Section 4.3

When used for TAP, the overgreedy algorithm
can give a result only for a given cardinality (the
number of positions used by a solution). For our
first TAP instance W-20, we shall use cardinality 10

Page 13 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

since this is the highest possible, as we will learn in
Section [/} so the overgreedy algorithm needs to find
the 9 least-cost legs. For W-20 the prescribed start
node is a, so we can refine the algorithm description
of Section [4.3] by starting with the least-cost leg
from a and then add the 8 least-cost legs of the
remaining ones. The overgreedy algorithm should
never ask the pathfinder to find a leg between two
positions closer to each other than the risk radius,
since two such positions cannot be used in the same
solution, but otherwise the pathfinder should ignore
risk circles. Each pair of positions will have two
different least-cost legs between them, one in each
direction, since the terrain graph is a directed graph,
but the overgreedy algorithm should select at most
one of them since both cannot be used in a solution.

Figure [5] shows the result for W-20. Since our
leg costs are travel times, they are displayed as
minutes:seconds or as hours:minutes:seconds. The
lower bound is the sum of the nine leg costs: 2 h
19 min 20 s or 8360 seconds.

For our second problem instance, K-20, the
maximal cardinality is 11 as we shall learn in
Section [/, and the overgreedy algorithm chooses the
least-cost leg from K and the nine least-cost legs from
the rest; Figure 6]

For our third problem instance, D-20, the
maximal cardinality is also 11. The overgreedy
algorithm chooses the same legs as for K-20, because
the ten least-cost legs overall happen to include the
least-cost leg both from K and from D. So, the lower
bound is the same.

The best solutions we have found for W-20, K-20
and D-20 have costs that are 29%, 44% and 48%
higher than the corresponding lower bound. We think
that our best solutions are nearly optimal while the
lowest bounds are not tight, but we do not have any
proof of that.

6.5 Trying Nearest Neighbor
Now that we know lower bounds for some TAP
instances, let us try the simplest heuristic algorithm

Lower bound
for cardinality 10
2:19:20 (8360 5)

e i N

¢ b

12:%0

dwf'{'l:i

151
14747

Ty
\rh'js—lLH“ m [4 4%
Ne ol

Figure 5: Overgreedy lower bound for W-20.

Lower bound
tor cardinality 11

A7 B 1:35-48 (5748 5)

Figure 6: Overgreedy lower bound for K-20 and D-20.

to find solutions. In Section [7] we will describe how
one can sometimes reduce problems by removing
positions that cannot be part of an optimal solution,
but for now we shall use all positions of the TAP
instances.

First, we use Nearest Neighbor for TAP with
legs as edges on our first problem instance, W-20

Page 14 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

(Figure [3). As an example of how the algorithm
proceeds, see Figure[/] It started from the prescribed
start position a and is shown after choosing a
sequence of five positions. For the next choice of leg,
the pathfinder has generated all possible legs from the
current position o to some other valid position, with
their costs. (In this step, the pathfinder should use
Dijkstra’s algorithm once instead of A* search many
times, for efficiency.) The grayed-out positions can
no longer be chosen since they are inside a risk circle
of a previously used position. The remaining valid
goal positions are colored green, and of them it is q
that is reachable with the least cost, 16 min 33 s, so
it will be chosen as the next one. Note that the leg
from o to g passes through or very near p, but this is
allowed since p has not been used as a firing position.

Figure [§] shows the complete solution, where the
final escape path is shown as a dashed line from the
final position g to the safe node, although most of
the dashes coincide with the last half of the leg from
d to g. The top right label has a first line showing
how many positions are used and in what order, and
a second line showing the cost of the solution. After
using 10 positions there are no more valid ones left,
and we will prove in Section [/| that more than 10
cannot be used in this problem instance. The cost of
this solution is its total travel time, 4 h 02 min 05 s or
14525 s, which is mediocre: about 35% worse than
the best solution we have found for this instance. The
computation time for each added leg was about 0.3 s
and the entire solution required about 3 s (but see the
disclaimer in Section [6.2)).

What greedy choices made this a mediocre
solution? For a human being, it is obvious that
it was a mistake to leave position g unused when
going south from a the first time, since the risk
circles generated going south eventually force a long
detour for the last leg from d when only g and
h remain as valid choices. Another improvement
is possible in the southeast by visiting t before q.
Other local improvements may be possible, but we
did not see any obvious ones. These two manual

d L g ;
L d'fﬁ g h
1 - B .

\ 0 B e
Lol "‘x' =h o
“\‘-. 1}.:4 {
—
~ \
_\"‘ﬂ-\. o [/‘ﬁ'"-,‘
3 1=k .:' %
r Elp-:: ','r"'l
& S A
g W
t

Figure 7: Nearest Neighbor in progress, W-20.

improvements give a solution (Figure[TI0) whose cost
is only 4.8% higher than the best solution we know
of. A human and a computer may be able to find good
TAP solutions by cooperating: the computer uses the
Nearest Neighbor algorithm and the human improves
the solution manually.

For our second TAP instance, K-20, the Nearest
Neighbor algorithm gave the solution shown in
Figure [0 which is excellent. If the solution had used
F instead of I its cost would have been lower but only
by 1.8%, and the improved solution is the best we
have found for this instance. In fact, all our attempts
with Random Neighbor (see next subsection) found
only four solutions that were better than the one
from Nearest Neighbor. For our third TAP instance,
D-20, where one shall start from D instead of K, the
Nearest Neighbor algorithm gave the solution shown
in Figure |11} which uses only ten positions. This is a
poor solution since one can use eleven positions also

Page 15 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

10, abfjoqtndg
|1 4:02:05 (14525 5)

11, KPMIEADHNST
| 2:20:22 (8422 5) e 24? 535 (10075 s)

. quL_ i-.r II; |If = 3 ‘1‘;&_‘1__1?

-

. %_1

Figure 9: Result from Nearest Neighbor, K-20. Figure 11: Result from Nearest Nelghbor, D-20.

Page 16 of
Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

when starting from D, and by our lexicographic
ranking, any solution with cardinality 11 is better
than all with cardinality 10.

6.6 Trying Random Neighbor

As mentioned in Section [5.2] the Random
Neighbor algorithm uses bias functions to balance
greed with randomness. The term “bias function”
was coined by Bresina [15], who lets the argument
to his bias functions be the rank of the alternatives
when sorted by cost; that is, the least-cost alternative
gets rank 1, the next gets rank 2, etc.

If one demands that a bias function produces
probabilities, it will be difficult to specify by a
formula since the sum of the probabilities for an
exhaustive set of disjoint events must sum to 1. So,
like Bresina, we allow our bias functions to produce
nonnegative weights that do not need to sum to 1,
and then we say that alternatives shall be chosen with
probabilities that are proportional to their weights. In
other words, the normalization of weights to a sum
of 1 is handled by the main algorithm rather than by
the bias function.

On the other hand, when bias functions are
plotted in diagrams, they are easier to compare if the
function values have been normalized. Since a new
normalization must be computed for each specific set
of alternatives, we have plotted diagrams based on
the set of alternatives in Figure|/|where the algorithm
shall choose the next position from nine possible
alternatives.

We have tried three families of bias functions,
where each family has one or two parameters that can
be instantiated to get a bias function.

Exponential bias functions

The first family is exponential bias functions with
a base parameter b between 0 and 1. These functions
are defined as follows, where r is the rank of an
alternative:

exp-bias,(r) = b" (1)

When Random Neighbor uses this kind of bias
function, we can abbreviate it to ExpRankRN. In
our experiments we let the base parameter b get the
values 0.75, 0.50, 0.25 and 0.0625. Figure [12] shows
that 0.75" (the green curve) has a thicker tail that will
make ExpRankRN choose a costly option more often
than when the slim-tailed function 0.0625" is used
(the red curve).

Polynomial bias functions

The second family is polynomial bias functions
with a nonnegative degree parameter d. For this
family, we decided to let their argument be the cost ¢
of an alternative rather than its rank, on a hunch that
some useful information can be lost when converting
cost to rank.

poly-bias (c) = ¢)

This formula is convenient since we do not need
to worry about the unit of measure for our leg costs.
The weights would become much smaller if we
switched our leg cost unit from seconds to minutes,
but there would be no difference after the weights
are rescaled to probabilities that sum to 1. When
Random Neighbor uses this kind of bias function, we
can abbreviate it to PolyCostRN. See Figure [[3]

Gaussian bias functions

In both the exponential and polynomial bias
families, the functions are convex (by convention,
that means that the area above the function curve is
convex). In our experiments, which will be described
in detail soon, we found that the tail of the functions
needed to be kept slim to decrease the probability
of choosing a costly alternative, but tweaking the
parameters for a slimmer tail would also make
the “neck” steeper (the beginning of the function
curve). With a steeper neck, the bias function will
choose more greedily among the best alternatives,
and more and more of the generated solutions will
just reproduce the solution from Nearest Neighbor.

Page 17 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

For our third and final family we used bias
functions that have a concave neck followed by a
convex tail, in the hope that one could get a slim
tail without an overly steep neck. The family can be
called Gaussian bias functions since they are inspired
by the bell-shaped Gaussian (normal) probability
distribution. To avoid a dependency on the leg
cost unit, we normalized the costs for each set of
alternatives. That is, we found the minimal cost ¢y,
of the set and for each alternative with a cost of ¢, we
let its normalized cost ¢’ be defined by

¢ = ¢/Cmin 3)

Then we can define the Gaussian bias functions with
two parameters ;. and o.

| (—
gauss-bias,, ,(c') = exp (— 5o 4)

Since such a function is decreasing only where
¢ > p, we should ensure that g is at most 1, the
smallest value of ¢/, otherwise the function will be
anti-greedy for ¢ < p. We have only tried with
= 1. When Random Neighbor uses this kind of
bias function, we can abbreviate it to GaussCostRN.
See Figure [14]

Prob,
100%7 U065
60%
Q501
400% 1
ED% d s
Us =12 3 4 5 6 7 8 § 2K

q s r t h g n i o
Figure 12: Probabilities from ExpRankRN for the nine alter-
natives in Fig. m, using various values of b.

Prob. o

60%1 7

40% :1

0 L

"oy s o
| (sec.)

| :
gqsrt h g n i o
Figure 13: Probabilities from PolyCostRN for the nine alter-
natives in Fig. m using various values of d.

Prob. o
100% 005
80%{ |
60%71 '\
405 b: -'I’-
20%1 05Fhe—
‘ A T 1
A S
gsrt h g n i o

Figure 14: Probabilities from GaussCostRN for the nine alter-
natives in Fig. m using p = 1 and various values of ¢.

Page 18 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

10, abfdngte]jg

o e "'._ 2:59:37 (10777 5)

Flgure 15 Wmmng solutlon of W-20.

Highlighted solutions

Before tabulating the results from using these
bias functions, let us look at some highlights. The
winning solutions for W-20 and D-20 are shown in
Figures [I5 and [I6] The winning solution for K-20
used 11 positions with a cost of 8274 seconds; we do
not show it in a separate figure since it differs from
the Nearest Neighbor solution for K-20 (Figure [9)
only by using F instead of I. Figure shows a
valid but poor solution for W-20 that uses only 7
positions: after the 7th has been used, there are no
more positions outside the risk circles. Figure
shows how the search can reach a dead end: after
using the last position j the vehicle cannot reach the
final safety node, because it must not pass through
the surrounding risk circles of b, g, o, and k. Since
our algorithm never backtracks, it must give up in
this situation (it does not see that using h instead of g
would have allowed escape from j).

o ._ "H-I

Lf&

: ‘I 254 ||;|1'=._.
r1 ﬁ"-

J

|1, DABHQLMIKPT
2:22:03 (8523)
|

;{lru

.;.,| e

11: II'-

2048

i abFiljs
33:02 (9182 5)

Flgure 17 A valid solution of W 20 using only 7 positions.

Page 19 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

" 10, abedkoqtg
3:29:02 (12542 5)
Failure, dead end

Figure 18: A failed attempt at W-20 that cannot reach safety.

Results

In Section [/l we will describe how one can
sometimes reduce problems by removing positions
that cannot be part of an optimal solution, but for now
we shall use all positions of the TAP instances, as a
baseline.

We have used ExpRankRN, PolyCostRN and
GaussCostRN with various parameter settings on our
three TAP instances. Each setting was tested 1000
times per TAP instance since the random choices
may need many attempts to give good solutions.

To draw conclusions about which bias functions
and which parameter settings are best, we tabulate
three metrics for each batch of 1000.

The first metric is the quality of the best solution
from each batch. Since solutions shall be ranked
lexicographically, with high cardinality being more
important than low cost (Section [3.4), the best

solution is the one with least cost among those with
maximal cardinality. The cost of that solution is
tabulated in the rightmost columns with the caption
Winning cost. But it may be unwise to deduce the
best bias functions and parameters only from the
winning cost since, by that metric, a batch of 1000
attempts could produce a single excellent solution
just by a stroke of luck. So we also used two other
metrics that may be more stable, statistically.

The second metric is the number of solutions with
maximal cardinality in the batch, which is tabulated
in the middle columns with the caption # tens for
W-20 and the caption # elevens for K-20 and D-20.

Our third metric is the number of “top-tier”
solutions in the batch, tabulated in columns with the
caption # top-tier. The idea is that for operational
use, it should not be essential to find the solution
with the minimal possible cost, because the costs are
calculated travel times that are only approximations
of the true travel times. A more sensible ambition
could be to just find a solution (of maximal cardi-
nality) with a cost that is at most about 10% higher
than the minimal cost, and we call that a rop-tier
solution. Instead of using 10% exactly, we used
slightly different top-tier thresholds for the three
problem instances:

* For W-20, a top-tier solution must have a cost
less than 12000 seconds (3 h 20 min): less than
11.35% higher cost than the overall winning
solution.

* For D-20, a top-tier solution must have cost
less than 9600 seconds (2 h 40 min): less than
12.64% higher cost than the overall winning
solution.

e For K-20 where Nearest Neighbor gave an
excellent solution with a cost of 8422 seconds,
a top-tier solution must have even lower cost:
less than 1.79% higher cost than the overall
winning solution.

Page 20 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Table 3: Summary of column meanings. Table 6: PolyCostRN used on W-20.
top-tier # tens, # elevens | Winning cost d | # top-tier | # tens | Winning cost
Number of valid | Number of valid | Least cost among 0 0 204 14810 s
solutions with solutions with the valid solutions 1 0 212 12752 s
max cardinality | max cardinality. | of max cardinality. 2 1 206 11895 s
and not much 3 9 246 10932 s
higher cost than 4 8 292 11327 s
the overall 5 14 320 11397 s
winner. 6 27| 310 10787 s
7 35 333 10777 s
8 28 384 10777 s
Table 4: ExpRankRN used on W-20. 9 28 378 10777 s
b # top-tier | # tens | Winning cost
0.75 1 247 11538 s
050 1 1 324 10787 S Table 7: PO]yCOStRN used on K-20.
025 34 415 10787 s d | # top-tier | # elevens | Winning cost
0.0625 8| 757 10787 s 0 0 379 12327 s
1 0 386 9344 s
2 0 436 9543 s
Table 5: ExpRankRN used on K-20. 3 0 483 8582 s
. r— 4 3 581 8274 s
b # top-tier | # elevens | Winning cost
5 4 667 8274 s
0.75 0 406 9049 s
6 2 724 8274 s
0.50 0 536 8422 s
7 2 757 8274 s
0.25 0 859 8422 s
0.0625 0 934 8422 8 4 835 82745
: > 9] 864 8274 s

For W-20 and D-20, we wanted to use a round
number as the threshold. For K-20, if we had Table 8: PolyCostRN on D-20.

defined “top-tier” in a way that included the Nearest d | # top-tier | # elevens | Winning cost
Neighbor solution, the top-tier metric would favor 0 0 337 12086 s
bias functions with an extremely thin tail that nearly 1 0 383 9884 s
always generate the Nearest Neighbor solution — 2 2 381 9433 s
which would not be an interesting result. 3 15 461 8877 s

In each column of the tables, the best result or 4 25 504 8523 s
results will be shown in boldface, except if all results 5 50 544 8700 s
in a column are identical. 6 72 614 8045 s

When trying out ExpRankRN, we let the base 7 80 596 8045 s
parameter b get the values 0.75, 0.50, 0.25 and 8 120 647 8945 s
0.0625, the same as in Figure The results for 9 156 677 8045 s

W-20 and K-20 are shown in Tables 4] and [3} we have
not tried ExpRankRN on D-20.

Page 21 of

Optimizing Firing Position Usage for Survivability and Effectiveness
in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

When trying out PolyCostRN, we let the degree
parameter d get the values 0, 1, 2, ..., 9. The results
are shown in Tables [6]—[8

We have not tried GaussCostRN on these
problem instances, but in Section [/| we will try it on
a variant of D-20 in which three positions have been
removed.

Takeaways

Not all differences between rows are statistically
significant, and we have not found any single bias
function that outperforms all others.

Based on the number of top-tier results, it seems
that ExpRankRN works best when b = 0.25, and
on this metric, it is about as good as PolyCostRN
withd =7.

For PolyCostRN, d should be at least 4, but
there is no value that is always best in the range
from 4 to 9. Overall, the bias functions with thick
tails perform poorly because they choose expensive
alternatives too often. Although slimming the tail
tends to increase the number of top-tier results, our
bias formulas will make the “neck” steeper when
the tail is slimmed, and we have noticed (but not
tabulated) that a side-effect of a steep neck is that one
gets fewer unique results — which can make it harder
to find an optimal or near-optimal solution.

For PolyCostRN used on D-20, the number of
top-tier results increases with the degree d, more so
than for W-20 and K-20. On the other hand, for D-20
the mid-range d values 4 and 5 find winning solutions
with a lower cost than the values 6 to 9, which is
strange since d = 9 gives 6.24 times as many top-tier
results as d = 4. It is less strange if we count only
unique top-tier solutions, because d = 4 produces 20
unique top-tier solutions while d = 9 produces 31 or
only 1.55 times as many.

For both W-20 and K-20 we found the overall
winning solution many times, which made us believe
that these winners were optimal. But for D-20
we found the overall winning solution only three
times, and only when using PolyCostRN with d = 4.

Our bias functions seem to make the overall winner
of D-20 very improbable, but we do not know why,
and we have become less certain that the overall
winners we have found are optimal.

To conclude, for TAP instance K-20 it is very
hard for Random Neighbor to beat the Nearest
Neighbor solution which was only 1.8% more costly
than the winning solution. For the two other
instances, we can reach about 3.5% and 15.6%
probability of getting a top-tier result when running
Random Neighbor once. In operational use, one
would have to repeat Random Neighbor several times
to increase the probability, but not 1000 times:

* For W-20, one can repeat Random Neighbor 30
times to get a 66% chance of getting a top-tier
result.

* For D-20, one can repeat Random Neighbor 7
times to get a 69% chance of getting a top-tier
result.

In the next section, we will see that one can
sometimes identify positions that can never be part
of an optimal solution, and by removing them before
running Random Neighbor, one can improve the
chances.

7 CONFLICTING POSITIONS

After running thousands of attempts with
Random Neighbor on each problem instance, we had
empirical evidence that highest possible cardinality
of a valid solution was 10 for W-20 and 11 for
K-20 and D-20. To find definitive proof that these
cardinalities are optimal, we used a branch of graph
theory that studies independent sets.

7.1 Independent Sets in Graphs

In an undirected graph, an independent set is
defined as a set of nodes in which no two nodes are
connected by an edge. Such a set can be maximal or
maximum:

Page 22 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Figure 19: Examples of independent sets. A: the two blue
nodes form a maximal independent set. B: the three blue nodes
form a maximum independent set.

1. A maximal independent set is an independent
set that is not a proper subset of any other
independent set in the graph.

2. A maximum independent set is an independent
set with the maximum number of nodes that an
independent set can have in the graph; this is
the independence number of the graph.

One can say that a maximal independent set is a
local maximum in a search for a large independent
set, while a maximum independent set is a global
maximum (which is not necessarily unique). A
maximum independent set must also be maximal, but
the converse is false. For examples, see Figure[19]

7.2 The Conflict Graph of TAP

In the traveling artilleryman problem, let us say
that position p excludes position ¢ if ¢ € R(p).
Using just the formal problem statement, exclusion

is not necessarily a symmetric relation, but it is
symmetric in our practical instances of the problem
where positions are embedded in a 2D surface and
the risk-circle sets are defined via geometrical circles
with the same radius. That is, in the practical
instances, p excludes ¢ if and only if ¢ excludes p,
and then we say that p and q are in conflict, otherwise
they are independent. In a valid solution any pair of
used positions must be independent, regardless of in
which order they were used.

Let us define an undirected conflict graph that is
much smaller than the full terrain graph. The nodes
of the conflict graph are the positions of the TAP
problem instance, and two positions are connected
by an edge if they are in conflict. The independence
number of the conflict graph is an upper bound of the
cardinality of a valid solution of the TAP instance.

7.3 Finding the Independence Number

For our TAP instance W-20, the conflict graph is
shown in Figure [20f and we hope to prove that its
independence number is 10. We already know that
it must be at least 10, since we have found solutions
with cardinality 10.

Calculating the independence number of a graph
is an NP-hard problem, but there are only 20
positions in W-20 so the conflict graph is small. We
decided to implement an exhaustive search algorithm
that loops through the unsigned 32-bit integers from
0 to 22Y — 1, treating the bit-pattern of each integer
as a coded subset of the positions. For each
integer interpreted as a subset, the exhaustive search
algorithm checks whether the subset is independent,
in which case its number of elements is noted. Most
of the code was straightforward, but for the task of
counting the 1-bits of an integer we used a non-trivial
method [20]; for alternatives, see [21]. Despite
the naivety of the exhaustive search algorithm, it
took only about 5 milliseconds of CPU time to find
that the independence number for the conflict graph
was indeed 10. The result confirms that no valid
solution of W-20 can have more than 10 positions,

Page 23 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

a
"
b
C @
d¥af ™
N
T 9 h
W L ST
\ _.-'I' . .:,-'"F -L|/
i Vi ¥
ne i ’
o
I _,.-'P.:
-lf-"l";l::l;."
L
.

Figure 20: The conflict graph of W-20.

A B
D ..-\"'\-\. __-'.-‘._ |
= g by
C..i»
F
E "-.-..G |
*H J oI
» o
a e 0
| Ly vese |
| o
L]
MO
5 .

Figure 21: The conflict graph of K-20 and D-20.

although it does not give a short human-readable
proof.

For our other TAP instance, K-20, the conflict
graph (Figure 2T)) consists of the three isolated nodes
D, H and K and four disconnected sub-graphs. This
time we do not need any computer assistance to find
the independence number, because every isolated

node must be part of a maximum independent set,
and the four sub-graphs are small and can be studied
separately. From the top left sub-graph (with the
positions A, B, C, E) we can choose at most two
independent nodes, from the top right sub-graph (F,
G, I) only one, from the bottom left sub-graph (J,
L, N, Q, S) at most two, and from the bottom right
sub-graph (M, O, P, R, T) at most three. Thus, the
independence numberis 3 +2+ 1 +2+3=11.

The time complexity of the exhaustive search
algorithm is O(n?2") for graphs in general, where
n 1is the number of nodes. But we think that
conflict graphs for TAP tend to be sparse in the
sense that the number of edges is proportional
to n rather than to n?, and then the complexity
should be O(n2"). Under this assumption, our
exhaustive search implementation should require
about 8 seconds for n = 30, about 3 hours for
n = 40, and about 155 days for n = 50.

There are better algorithms. The algorithm
by Xiao and Nagamochi [22] can calculate the
independence number using polynomial space and
a time complexity of O(1.1996") which is still
exponential but much better, but they do not
give examples of computation times on benchmark
graphs, and algorithms with the best time complexity
are not always fastest in practice. However, many
such examples are given by Akiba and Iwata [23]]
who have implemented and tested three algorithms
on many benchmark graphs. Their results are hard to
summarize since the difficulty of a graph cannot be
predicted just from its number of nodes and edges,
but for the fifteen benchmark graphs with fewer than
100 nodes (the largest of which had 88 nodes), even
their slowest algorithm required less than 1 second
of computation time. (The algorithms of Akiba
and Iwata find a minimum vertex cover instead of
a maximum independent set, but the two problems
are equivalent [24].) Also, in many applications it is
enough to find independent sets that are large but not
necessarily of maximum size: see the KaMIS project
of Dahlum et al. [25]].

Page 24 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

7.4 Remove Blocking Positions

Let us investigate whether the best solutions of
W-20 favor some positions over others. When we
run the Random Neighbor algorithm 1000 times with
the polynomial bias function of degree 7, we found
333 valid solutions of cardinality 10, and Table[J]tells
how often each position was used.

We can see a stark pattern: the five positions with
blue names in the table, a, b, j, o and t, are used by
all 10-cardinality solutions, while the five positions
with red names in the table, e, 1, m, p and s, are not
used at all. (Admittedly, it is not surprising that the
prescribed start position a is used by all solutions.)

The pattern can be explained by further analysis
of the maximum independent sets. Let us define two
new concepts:

* A node in an undirected graph is a
maximum-independent-set blocker or MIS-
blocker if it is not an element of any maximum
independent set of the graph.

* A node in an undirected graph is a
maximum-independent-set requisite or MIS-
requisite if it is an element of every maximum
independent set of the graph.

We made a minor modification of our exhaustive
search algorithm, which confirmed that the five
unused positions e, 1, m, p and s are indeed
MIS-blockers for the conflict graph for W-20 while
the five favored positions a, b, j, o and t are
indeed MIS-requisites, as illustrated in Figure [22]
We do not know if the more sophisticated algorithms
mentioned in Section would be easy to adapt to
find MIS-blockers. When we discovered that MIS-
blockers and MIS-requisites were useful concepts
in our setting, we contacted some experts — see
Acknowledgments, Section @— to ask whether these
concepts had established names and if there were
algorithms to find such nodes, but the answer was
negative (although they said that the concepts may

Table 9: Some positions are favored, others avoided.
position | times used
333
333
153
274
0
180
207
126
59
333
98

dlun|g|Q0|o|B|8 | ®u|lkBQ|H 0O o|l0 o

have been used in the innards of some algorithm for
finding the dependency number).

Knowing which nodes are MIS-blockers, we can
remove them from W-20 and solve the reduced
problem with 15 positions, call it W-15, since it must
have the same optimal solution. We repeated our RN
experiment on W-15 and got the results in Tables
and

So, if we run ExpRankRN on W-15 just once
with b = 0.25, we get a probability of about 86% of
getting a solution of cardinality 10 and a probability
of about 10.6% of getting a top-tier result. This
is a significant improvement over ExpRankRN on
W-20 where the corresponding probabilities were
about 42% and 3.4%. Assuming that the probability
of a top-tier result is exactly 10.6%, we will get a
66% chance of a top-tier result for W-15 by running
Random Neighbor just 10 times, instead of the 30
times needed for W-20.

Page 25 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

a
®
b
i &
T g
e
|I !/_, [: " _h
L@ g [F f
¥ i oy 7
nﬂ.tr___,... k I‘;_‘fﬂ/"
},r Lo
I'
£:‘“-.:E.|? J
5 g

Figure 22: Analyzed conflicts of W-20.
Red: MIS-blockers; blue: MIS-requisites.

A B
D st gl e |
O o
Coyme
F
E oG
"y 3 “oT
-'_"."': ['FJ -'H
NY“L P |
] .
__."-q T ----..-__.-'
.S L

Figure 23: Analyzed conflicts of K-20 and D-20.
Red: MIS-blockers; blue: MIS-requisites.

The five MIS-blockers can also be removed when
running the overgreedy algorithm to find a lower
bound of an optimal solution. Three legs in Figure [3]
are connected to the MIS-blockers e, 1 and t, so
they are not relevant. Without the five MIS-blockers,

Table 10: PolyCostRN used on W-15.

d | # top-tier | # tens | Winning cost

0 0 763 14237 s

1 0 782 12101 s

2 6 804 11213 s

3 25 819 10777 s

4 46 805 10777 s

5 69 790 10777 s

6 71 794 10777 s

7 74 742 10777 s

8 80 778 10777 s

9 79 769 10777 s

Table 11: ExpRankRN used on W-15.

b # top-tier | # tens | Winning cost
0.75 2 805 11310 s
0.50 34 821 10787 s
0.25 106 859 10777 s
0.0625 95 943 10787 s

the overgreedy algorithm would find three other legs:
one from g to o with a cost of 16 min 26 s, one from
t to g with a cost of 16 min 27 s, and one from g to
j with a cost of 18 min 06 s. These changes raise the
lower bound by 5 min 01 s or 3.6%.

For our second problem instance, K-20, the
MIS-blockers and MIS-requisites can be found
manually by studying each sub-graph separately in
Figure As shown in Figure 23] there are three
MIS-blockers, C, O and R, so by removing them we
get a reduced problem instance K-17 that has the
same optimal solution as K-20.

We have repeated the Random Neighbor
experiment also for K-17; see Table This time
every produced solution had cardinality 11, which
is a significant improvement of the results for K-20
(Table [7). But the number of top-tier solutions of
K-17 is not significantly greater than for K-20, nor is
the best result consistently better.

Since D is among the 17 remaining positions, we
can use them to define a reduced version D-17 also

Page 26 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Table 12: PolyCostRN used on K-17.

d | # top-tier | # elevens | Winning cost

0 0 1000 10212 s

1 0 1000 9999 s

2 0 1000 8750 s

3 0 1000 8476 s

4 0 1000 8422 s

5 7 1000 8274 s

6 3 1000 8274 s

7 4 1000 8274 s

8 2 1000 8274 s

9 1 1000 8274 s

Table 13: PolyCostRN used on D-17.

d | # top-tier | # elevens | Winning cost

0 0 1000 11036 s

1 0 1000 10440 s

2 3 1000 9008 s

3 11 1000 9056 s

4 30 1000 8819 s

5 65 1000 8945 s

6 94 1000 8945 s

7 115 1000 8945 s

8 131 1000 8945 s

9 170 1000 8945 s

Table 14: GaussCostRN used on D-17.

wlo # top-tier | # elevens | Winning cost
1]0.10 202 1000 8945 s
1]0.07 300 1000 8945 s
11{0.05 316 1000 8945 s
1]0.03 197 1000 8945 s

of our third problem instance D-20 in which D is
the prescribed start node. For this problem instance
it makes sense to repeat both Nearest Neighbor
and Random Neighbor with the 17 positions, since
Nearest Neighbor with all 20 positions managed to
use only 10 positions instead of 11 (Figure[IT).

11, DABJQHFMPHT
2:536:09 (10569 5)

F i | ; |

Figure 24: Result from Nearest Neighbor, D-17.

The Nearest Neighbor result for D-17 does reach
11 positions; see Figure [24] above.

The PolyCostRN results for D-17 are shown in
Table Remember that the definition of “top-tier”
differs between D-17 and K-17 (Section [6.6), so
one should not compare the top-tier columns for
Tables [12] and [I3] with each other. In Table [13] one
can see that the number of top-tier results increases
with degree and is highest for d = 9. But a peculiar
detail is that the winning solution with cost 8819 s
was found only with d = 4 and then only once,
while the runner-up with cost 8945 s was found once
with d = 4 and 45 times with d > 4. Despite the
slightly better chances of finding top-tier solutions
for D-17 than for D-20, the overall winner from D-20
(8523 seconds, Figure was better than the overall
winner from D-17 (8819 seconds).

We have also tried GaussCostRN on D-17. Some
preliminary tests suggested that the proportion of
top-tier results would peak with o near 0.05, so we
chose values for ¢ around 0.05 in our main tests, as
shown in Table[TI4] The number of top-tier results for
o =0.05 was 316, much higher than the best number
for PolyCostRN, but GaussCostRN did not find any
winning cost lower than 8945 seconds.

We have also revisited the lower bound for K-20
and D-20 that was computed by the overgreedy

Page 27 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

algorithm in Section Of the ten legs found by
the overgreedy algorithm (Figure [6), only the leg
from O to I involves a MIS-blocker. With the three
MIS-blockers removed, the overgreedy algorithm
working on K-17 or D-17 would instead choose the
leg from M to J with a cost of 11 min 18 s, which
would raise the lower bound by 3 min 30 s or 3.7%.

7.5 Finding all Maximum Independent Sets

One may wonder how many different maximum
independent sets there are in the conflict graph for
W-20. When we adapted our exhaustive search
algorithm for this question, we found that there were
only 16 such sets. (We do not know how good the
sophisticated algorithms mentioned in Section
would be for this purpose, since they are designed
to find the independence number and one example of
a maximum independent set). Again, the algorithm
does not provide a short human-readable proof of
this, but if you trust Figure 22] it can be used to
generate the 16 sets. To begin with, each maximum
independent set must contain ten nodes, and since it
must contain all five of the blue nodes, it must also
contain five of the ten black nodes. Of the black
nodes, g and h are in conflict with each other but
not with any other black node, so we must choose
exactly one of them. The same is true for r and q,
giving us another choice with two options, and the
two choices are unrelated. Finally, we must choose
three independent nodes of the six remaining black
ones, the set { d, i, n, k, £, ¢}, which can be done
in four ways:

1. {d,n, £}
2. {d,n, c}
3. {d,k, c}
4. {i, k, c}

So we have three unrelated choices with 2, 2 and
4 options each, giving 2 x 2 x 4 = 16 ways

Table 15: PolyCostRN used 1000 times in total on the 16
subproblems of W-20.

d | # top-tier | # tens | Best result
7 43 999 | 10787 s

to construct a maximum independent set. The
number 16 is smaller than we had expected, since
it is possible to design a graph with 20 nodes that
has 1024 different maximum independent sets: just
ensure that the nodes are grouped into 10 pairs with
an edge for each pair but no other edges.

Can we exploit the low number of maximum
independent sets to improve the search for solutions
of W-20? One idea is to reduce W-20 to sixteen
subproblems of 10 nodes each and run Random
Neighbor on each of them. One such subproblem
should be easier to solve than the 15-node problem
W-15 of the previous section, but since there are
sixteen of them, it is not obvious that this approach
would improve the search. We decided to try it by
running PolyCostRN 1000 times evenly distributed
over the sixteen subproblems, but 1000/16 = 62.5
so we run it 62 times on each of eight subproblems
and 63 times on each of the other eight. We did
this using only degree 7 for the polynomial bias
function. Table [13] shows the results, which were
unexpected. We got 999 valid solutions of cardinality
10 which is excellent, with the only exception being
an attempt that got stuck in a dead end as in
Figure[I8§] On the other hand, we got only 43 top-tier
solutions, which is significantly fewer than in the
corresponding experiments with W-15 (Table [10).
Since the number of top-tier solutions may be the
more important metric, we conclude that the division
into sixteen subproblems did not help.

In hindsight, we can say that the division into
sixteen subproblems should not help in the choice
between positions g and h or the choice between r
and q (see Figure[22)), because these choices cause no
problems when running Random Neighbor on W-15:
when the algorithm has chosen to use one of g and
h or one of r and q, the other option will become

Page 28 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

invalid and no opportunities have been lost. It is
the choice of three of the other six black positions
d, i, n, k, £, c that can cause problems for W-15,
because if Random Neighbor happens to choose i
and £ first, it cannot choose a third of the six, and the
solution will get a cardinality lower than 10. But we
do not know why the larger number of solutions with
cardinality 10 contained fewer top-tier solutions.

Another way to exploit the division into sixteen
subproblems is to further raise the lower bound found
by the overgreedy algorithm. In Section [7.4] we
described how the lower bound could be raised by
first removing the five MIS-blockers. But when the
overgreedy algorithm was run on W-15, it generated
nine least-cost legs between 12 positions that cannot
occur in the same solution, since a valid solution
cannot use more than 10. Indeed, among the 12
are both ¢ and £ which are in conflict and both d
and i which are also in conflict (even though the
overgreedy algorithm is smart enough not to generate
any leg between c¢ and £ or between d and i).
So, one can improve the lower bound further by
running the overgreedy algorithm on each of the 16
subproblems and use the minimum of the results.

For K-20 and D-20, a similar study of Figure
reveals that three unrelated choices must be made
when constructing a maximum independent set: we
have 2 options in the top left sub-graph where
we must choose A but can choose either B or E,
3 options in the top right sub-graph where we can
choose any of the three positions, and 5 options to
choose two independent positions of the bottom left
sub-graph. Thus, there are 2 x 3 X 5 =30 maximum
independent sets for D-20 and for K-20. We have
not tested Random Neighbor on the corresponding
30 subproblems of D-20 or K-20, because we see no
reason to believe that it would be better than running
Random Neighbor on D-17 or K-17. Unlike the
situation for W-15 where it would be a mistake to
choose i and £ early, Random Neighbor on D-17
or K-17 can choose black positions in any order
without losing the opportunity to eventually get the

optimal number, 4 black positions, as one can see
by inspecting each sub-graph in Figure 23|separately.
This structural difference between the conflict graphs
for W-15 and D-17/K-17 explains why all generated
solutions for D-17 and K-17 achieved the maximal
cardinality (Tables [12]—[14), while at most 94% did
so for W-15 (Tables [[0] and [T T)).

Finally, one could improve the lower bound for
K-17 and D-17 even more by exploiting the division
into 30 subproblems. We saw in Section [7.4] that the
lower bound calculated for K-17 and D-17 improved
the one for K-20 and D-20 by 3.7%. But the
improved lower bound is based on edges between a
set of eleven positions that do not form a maximum
independent set, since it lacks the MIS-requisites H
and T and contains some positions that are in conflict.
By instead using the overgreedy algorithm on each of
the 30 subproblems and taking the minimum result,
one could improve the lower bound further.

8 SOLVING A TRAVELING ARTILLERYMAN
PROBLEM
Altogether, our results suggest the following way
to find a good solution to a TAP instance:

1. Construct the conflict graph, analyze it to
find the positions that are MIS-blockers, and
remove them.

2. Run the Nearest Neighbor algorithm once.

3. Also run the Random Neighbor algorithm
thirty times (or more if time allows) using
a bias function with a slim tail, for example
ExpRankRN with b = 0.25, GaussCostRN with
p=1and o = 0.05, or PolyCostRN with d in
the range from 4 to 9.

4. Pick the best of the solutions found.

This approach should give a good chance of
finding a top-tier solution; that is, a good chance
of finding a solution with the highest possible

Page 29 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

cardinality and with a cost at most 10% higher than
the cost of the winning solution from thousands of
attempts by the Random Neighbor algorithm.

9 RELATED WORK

Our paper complements previous work on
shoot-and-scoot tactics. In Section we have
already described how we were inspired by the
work of Temiz [3]. In this chapter we present two
other related papers: Quinn and Kunkleman [16]
on finding good position areas, and Shim and
Atkinson [26]] on using Markov chain optimization
to determine when to shoot and when to scoot.

9.1 Finding Good Position Areas

Quinn and Kunkleman [16] study how terrain
affects artillery systems, specifically the terrain in
the Hohenfels Training Area and the surrounding
Maneuver Rights Area in Germany. They suggest
40 case points, each one representing the center of
a position area that should be large enough to contain
many alternative firing positions. (We have used their
case points as TAP positions, Section [6.1] but without
considering their varying quality or sizes.)

Quinn and Kunkleman list five criteria on
position areas and show how one can analyze digital
geodata to find and evaluate locations, although they
recommend true site reconnaissance. The five criteria
differ somewhat between the friendly forces in the
rural Hohenfels Training Area and the enemy forces
in the more populated Maneuver Rights Area. For the
friendly forces, the authors list the following criteria:

1. Level ground: no more than 5 degrees of slope.

2. Communications: some radio systems need a
free line of sight (say about 5 km).

3. Size: a battery (six howitzers) needs 3 x 3 km;
a platoon (three howitzers) needs 1.5 x 3 km.

4. Tree lines that provide cover and concealment.

5. No visibility from nearby villages or major
roads.

The criteria No. 1, 2 and 4 are also used for the
enemy’s position areas. But the size required by the
enemy is 3 x 3 km for a battery and only 1 x 1 km
for a platoon. And criterion No. 5 is inverted: instead
of avoiding villages, it is assumed that the enemy will
exploit the many settlements in the Maneuver Rights
Area for cover and concealment. This difference
in tactics is visible in our Figure 2] where one can
see the contrast between Quinn and Kunkleman’s
friendly case points in a rural area and their enemy
case points around the town of Burglengenfeld.

Finally, they evaluate each position area as
satisfying each criterion to a low, moderate or high
degree — except for the size criterion, which is rated
by a number: the occupiable percentage of a large
enough area around the case point.

9.2 Mission Support using a Markov Chain

How does one know when to shoot and when to
scoot? That is, for how long should we keep firing
from our current position until it is too exposed and
we need to scoot away? To answer this question,
Shim and Atkinson [26] have developed a statistical
model in which time is discretized into ticks or time
windows.

A time window is considered as an action, where
the unit will either fire at its target with an assumed
hit probability or flee from its current position with
an assumed success probability (enemy forces miss).

Shim and Atkinson assume that, every time the
unit has decided to scoot, the first shot fired from
the next firing position is free from risk. And there
is a feedback loop when continuing to fire from the
same position: the next fired round will have better
chances of hitting the target. But staying in the same
position increases the risk of being hit by opposing
forces. The model also includes a deadline: the
mission is successful only if the opposing target has
been eliminated before the deadline.

Page 30 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The problem is simplified by assuming that the
unit will either stay in a firing position and shoot until
the next time window occurs or scoot immediately
after its first risk-free shoot.

When firing, the probability of success is
calculated as: probability of hitting target in current
time window + probability of hitting target when
entering next time window. When scooting, the
success is calculated as: Probability of hitting
risk-free shoot + probability of making a successful
relocation + probability of hitting target before time
window runs out. These calculations are done in
reverse, where you start at the last time window and
traverse backwards to estimate total success. Since
each variable is dependent on what happened in
previous time window, Shim and Atkinson apply a
Markov chain to find a solution.

10 FUTURE WORK

In future work, one could either keep the problem
statement but try to handle it better, or try to improve
the problem statement.

10.1 Better Algorithms

We think better algorithms should be possible.
For one thing, in our attempts to balance greed and
randomness we have tried only a few types of bias
functions, and apart from bias functions there are
several other ways to achieve balance [14]. But it
may be more important to improve the randomized
greedy solutions by local search procedures, which
have been very successful for the traveling salesman
problem [9, 10, [11]], although they may be difficult
to apply to TAP. Seemingly local changes to a TAP
solution can affect legs farther away, so the legs
and the risk circles will need a spatial index that
allows efficient detection of all legs that must be
recalculated after a local change. There are many
ideas in the TSP literature that one could try, but note
that some of them work only for undirected graphs.
Even if we wanted to study TAP for undirected
terrain graphs, the risk-circle constraint means that

if the sequence of used positions or a part of it is
reversed, further modifications may be necessary.

10.2 Using Brute-force Search to Find an
Optimal Solution

In Section we showed how the problem
instance W-20 with 20 positions could be reduced
either to the equivalent problem W-15 with 15
positions or else to 16 subproblems with 10 positions
each. Using W-15 instead of W-20 improved the
Random Neighbor algorithm but using the 16 sub-
problems did not.

However, the reduction to 16 subproblems
may be useful in an attempt to use brute-force
search where problem size is crucial. Since we
already know a good solution, we could use its
cost as a threshold for the refined version of
brute-force search; see Section 4.1l And since each
subproblem has only 10 positions, leg costs could be
precomputed reasonably fast; see Section

The benefit of using the threshold-based
refinement is hard to predict, but we think the total
computation time would be a matter of days rather
than weeks. The result of a successful attempt
would be either certainty that the winning solution
(Figure is optimal or a better solution.

For K-20 and D-20, there are 30 subproblems
instead of 16 and each has 11 positions instead of
10. We think that these differences would make
brute-force search roughly 20 times slower.

10.3 Soft Risk Circles

The risk-circle constraint is rigid in a way that can
be impractical. If two risk circles overlap slightly,
the artillery unit must not pass through the overlap
even if it could do so quickly. So, it is possible that
our algorithms find an optimal solution for one value
of the risk radius, failing to see that a much better
solution would be possible with a slightly shorter
radius that would separate the two circles. To avoid
missing such opportunities, a user could try shorter
and shorter values of the risk radius to get many

Page 31 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

different solutions, and then use her own judgment
to choose one of them.

It may be better to use two radii instead. An
inner radius would define a strict risk circle as before,
while an outer radius would define an annulus area
between the inner and the outer circle. One could
allow the pathfinder to use the annulus but only
reluctantly, with a degree of reluctance that can be
controlled.

In an earlier paper [27], we controlled the
reluctance for a softly restricted area by using a safety
factor between 0 and 1. If the factor is O, the area is
forbidden, and if it is 1, the area is perfectly safe. In
general, the true speed assumed for a vehicle shall be
multiplied with the safety factor to get a penalized
speed, which is then used to calculate the penalized
travel times that the pathfinder tries to minimize. For
example, if the safety factor of an area is 0.25, the
pathfinder will pretend that the vehicle speed is only
1/4 of its true value there, so each minute spent there
will count as 4, or one can say that each minute spent
there adds 3 penalty minutes.

However, it is not clear if modifying TAP like this
would be beneficial. In the original TAP there is only
one problem parameter to be decided by a human
expert: the risk radius. In the modified version, there
would be three: an inner and an outer radius and
a safety factor for the annulus area, so the space
of parameter settings will be larger and harder to
explore for a user.

10.4 Mixed Strategy

When we defined the traveling artilleryman
problem, we made the implicit assumption that the
enemy does not know where our firing positions are,
nor our strategy of using them. The reviewers for
GVSETS asked, what if that is false? That is, let
us say that our algorithm always finds the optimal
solution to a TAP instance. If the enemy knows our
firing positions and can use the same algorithm, then
they can predict the movements of our artillery unit.

A basic approach for this kind of situation is

well-known, the Game Theory concept of a mixed
strategy [28), chapter 6]: instead of using just the
optimal solution, we should be unpredictable by
first generating several good alternative solutions
and then choose one randomly. (Randomized
decisions were recommended also by Temiz [3,
page 20].) In this section we shall not discuss how to
assign probabilities to the alternative solutions since
that would require a well-defined way to measure
operational risks and opportunities, but we can
discuss how to generate good alternative solutions.

Of course, our Random Neighbor algorithm
already uses random choices, so the solution from
a single attempt is unpredictable, but it may be a
poor or invalid solution. And the more we repeat
Random Neighbor to find a top-tier solution, the
more predictable the result may be.

Previously, we have suggested running Random
Neighbor at least 30 times to get a good chance of
finding one top-tier solution. To find more than one,
we do not know any better way than the obvious
idea of running Random Neighbor many more times:
running it 300 times should give a good chance of
finding ten top-tier solutions.

We should also ensure that the top-tier solutions
in our shortlist are not too similar, since a random
choice between nearly identical alternatives is too
predictable. When positions are named by single
letters as we have done, a solution can be described
by a string (the names of the used positions in order),
so the similarity between two solutions could perhaps
be defined by some variant of edit distance [29].

To summarize: after many attempts with Random
Neighbor, one could order all solutions by quality
(cardinality and cost) and discard solutions with a
short edit distance to a better one; the beginning of
the remaining list should then be a useful shortlist.
Unfortunately, the top-tier metric of our experimental
results, as tabulated in Sections [6]and [7] does not tell
us how many times Random Neighbor would need to
be run in this setting. To learn that, one would need
to first define an edit distance threshold, and then

Page 32 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

for each batch of 1000 Random Neighbor attempts
discard the top-tier solutions that are too similar to
better ones, and count only the rest.

Even if we can find a mixed strategy that prevents
the enemy from deducing our plans in advance, the
risks will increase toward the end of the operation
if the enemy knows where our firing positions are,
at least if we need to use most of them. Because
the enemy will know which positions we have used
and can more easily predict the next one toward
the end when only one or a few unused positions
remain possible. In that situation, it may be better
to sometimes flee to safety before using all positions
allowed by the TAP rules, or to sometimes reuse an
old firing position, just to be more unpredictable. The
lexicographic order of solutions (Section [3.4) may
then be less useful, since it always favors solutions
that use as many positions as possible. To allow early
escape, it may be better to instead rank solutions by
cardinality divided by cost, representing the number
of used positions per time unit.

11 CONCLUSIONS

The traveling artilleryman problem is NP-hard,
but we have developed two heuristic algorithms,
Nearest Neighbor and Random Neighbor (Section [3)),
that can produce good solutions reasonably fast for
problems of modest size. We have also developed a
simple “overgreedy” algorithm (Sections4.3|and [6.4)
that calculates a lower bound of the solution cost for
a given cardinality (number of positions used).

We have also discovered a way to analyze
conflicts between positions in a TAP instance via
maximum independent sets. In this way, one can find
positions that cannot possibly be used by an optimal
solution, and by removing these, one can improve the
performance of the heuristic algorithms (Section [7).

We have tested our algorithms and our conflict
analysis on three TAP instances with 20 positions
each, and measured running time and solution quality

(Sections[6.5][6.6] [7.4] and [7.5)).

Running our Nearest Neighbor algorithm or

Random Neighbor algorithm once on one of our TAP
instances takes about 3 seconds in our implemen-
tation, but in general the time will depend on many
factors like the number of positions, the size of the
search area, and the terrain resolution (Section[6.2)).

Measuring solution quality was problematic. For
a solution of optimal cardinality (the number of
positions used), we would have preferred to define its
quality as the percentage by which its cost exceeds
the cost of an optimal solution. But we could not
measure that percentage, since we do not know the
optimal solutions. We do have the simple algorithm
that can calculate a lower bound for the cost of an
optimal solution, so we can measure the percentage
by which the cost of a solution exceeds the lower
bound, but we believe that our lower bounds are
not very tight. So, instead of comparing with the
optimal solution or a lower bound, we compare with
a “winning” solution: the best solution we have
found by running the Random Neighbor algorithm
many thousands of times on the problem instance.

By this metric, the Nearest Neighbor algorithm
produced an excellent result for one of our TAP
instances, but produced mediocre and poor results for
the two others (Sections[6.5] and [7.4)).

The average quality of solutions from the
Random Neighbor algorithm depends on how
choices are randomized, which can be done in
many ways. We have explored one way that uses
a bias function that assigns probability weights to
alternative choices depending on their cost. We have
not found a single bias function that outperforms
all others on our TAP instances, but we found
several that give a decent probability of finding
a “top-tier” solution: that is, a solution of the
highest cardinality with a cost not more than 10%
higher than the winning solution from thousands of
tests (Sections [6.6] and [7.4). Although the top-tier
probability can be low for a single use of Random
Neighbor, one should get quite a good chance by
repeating Random Neighbor thirty times (Section).

Page 33 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

11.1 Lessons Learned

We learned that bias functions work, but it is
difficult to get their tail slim enough without also
making their “neck” too steep (the beginning of
the function curve). That is, if the tail is too
thick, the Random Neighbor algorithm will choose
costly alternatives too often, which decreases the
probability of getting top-tier solutions. But if the
neck becomes too steep as a side effect of slimming
the tail, then the algorithm becomes too greedy when
choosing among the best alternatives and produces
fewer unique solutions, and a sizable number of the
solutions will just be the same as the one found
by Nearest Neighbor. So, it may be better to just
cut off the tail at some threshold, for example by
ignoring the worst half of the alternatives; then one
would be freer to design the bias function for the
remaining ones. Apart from bias functions, Resende
and Silva [14] list seven other general methods to
balance greed with randomness, so there is a large
design space to explore.

11.2 Local Search

Local search procedures that improve tentative
solutions have been very successful for the traveling
salesman problem, but they seem complicated to
apply to our problem; see Section[I0.1]

12 REFERENCES

[1] H. Lye, “Why modern militaries still
need artillery,” Global Defence Technology,
January 14, 2021. [Online]. Available:
https://defence.nridigital.com/global defence_
technology_jan21/why_modern_militaries_still
need_artillery

[2] B. B. Knutson Jr, Suppression of Enemy Air
Defenses (SEAD). U.S. Marine Corps, MCWP
3-22.2,2001. [Online]. Available: https://www.
marines. mil/Portals/1/Publications/ MCWP %
203-22.2%?20Suppression % 200f %20Enemy %
20Air%?20Defenses.pdf

[3] Y. Z. Temiz, “Artillery survivability model,”
Master’s thesis, Naval Postgraduate School,
Monterey, California, June 2016. [Online].
Available: https://apps.dtic.mil/sti/tr/pdf/
AD1026840.pdf

[4] R. Ruitenberg, “In Ukraine, ‘shoot-and-scoot’
tactics helping Caesars survive,” Defense News,
April 2, 2024. [Online]. Available: https:
/Iwww.defensenews.com/global/europe/2024/
04/02/1n - ukraine - shoot - and - scoot - tactics -
helping-caesars-survive

[5] H. Graff-Hedberg, “Archer mobile howitzer,”
BAE Systems, https://www.baesystems.com/en/
product/archer.

[6] W.T. Tutte, Graph Theory, ser. Encyclopedia of
Mathematics and its Applications. Addison-
Wesley, 1984, vol. 21.

[7] P. E. Hart, N. J. Nilsson, and B. Raphael, “A
formal basis for the heuristic determination of
minimum cost paths,” IEEE Transactions on
Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100—-107, 1968. [Online]. Available:
https://sci-hub.se/10.1109/TSSC.1968.300136

[8] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 3rd ed.
MIT Press, 2009.

[9] G. Laporte, “The traveling salesman problem:
An overview of exact and approximate
algorithms,” European Journal of Operational
Research, vol. 59, pp. 231-247, 1992. [Online].
Available: |https://web.1st.utl.pt/~ist11038/
CD_Casquilho/TSP1992EJOR _Laporte.pdf

[10] D. S. Johnson and L. A. McGeoch, “The
traveling salesman problem: A case study
in local optimization,” in Local Search in
Combinatorial Optimization, E. H. L. Aarts
and J. K. Lenstra, Eds. London: John Wiley &
Sons, 1997, pp. 215-310. [Online]. Available:

Page 34 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

https://defence.nridigital.com/global_defence_technology_jan21/why_modern_militaries_still_need_artillery
https://defence.nridigital.com/global_defence_technology_jan21/why_modern_militaries_still_need_artillery
https://defence.nridigital.com/global_defence_technology_jan21/why_modern_militaries_still_need_artillery
https://www.marines.mil/Portals/1/Publications/MCWP%203-22.2%20Suppression%20of%20Enemy%20Air%20Defenses.pdf
https://www.marines.mil/Portals/1/Publications/MCWP%203-22.2%20Suppression%20of%20Enemy%20Air%20Defenses.pdf
https://www.marines.mil/Portals/1/Publications/MCWP%203-22.2%20Suppression%20of%20Enemy%20Air%20Defenses.pdf
https://www.marines.mil/Portals/1/Publications/MCWP%203-22.2%20Suppression%20of%20Enemy%20Air%20Defenses.pdf
https://apps.dtic.mil/sti/tr/pdf/AD1026840.pdf
https://apps.dtic.mil/sti/tr/pdf/AD1026840.pdf
https://www.defensenews.com/global/europe/2024/04/02/in-ukraine-shoot-and-scoot-tactics-helping-caesars-survive
https://www.defensenews.com/global/europe/2024/04/02/in-ukraine-shoot-and-scoot-tactics-helping-caesars-survive
https://www.defensenews.com/global/europe/2024/04/02/in-ukraine-shoot-and-scoot-tactics-helping-caesars-survive
https://www.defensenews.com/global/europe/2024/04/02/in-ukraine-shoot-and-scoot-tactics-helping-caesars-survive
https://www.baesystems.com/en/product/archer
https://www.baesystems.com/en/product/archer
https://sci-hub.se/10.1109/TSSC.1968.300136
https://web.ist.utl.pt/~ist11038/CD_Casquilho/TSP1992EJOR_Laporte.pdf
https://web.ist.utl.pt/~ist11038/CD_Casquilho/TSP1992EJOR_Laporte.pdf

[11]

[12]

[13]

[14]

[15]

[16]

Optimizing Firing Position Usage for Survivability and Effectiveness

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

https://www.cs.ubc.ca/~hutter/previous-earg/
EmpAlgReadingGroup/TSP-JohMcg97.pdf

C. Rego, D. Gamboa, F. Glover, and
C. Osterman, “Traveling salesman problem
heuristics: Leading methods, implementations
and latest advances,” FEuropean Journal
of Operational Research, vol. 211,
no. 3, pp. 427-441, 2011. [Online].
Available: |https://leeds-tfaculty.colorado.edu/
glover/fred % 20pubs/429 % 20- %20TSP %20 -
920problem %20heuristics %20- %20leading %
20methods, %201mplementations, %20latest %
20advances.pdf

D. Applegate, R. Bixby, V. Chvatal, W. Cook,
and K. Helsgaun, “Optimal tour of Sweden,”

https ://www.math.uwaterloo.ca/tsp/sweden,
2004, accessed: 2025-01-03.

G. Righini, “Efficient optimization of the
Held—Karp lower bound,” Open Journal of
Mathematical Optimization, vol. 2, article no.
9, 2021. [Online]. Available: https://ojmo.
centre-mersenne.org/articles/10.5802/0jmo.11

M. G. C. Resende and R. M. A. Silva,
“GRASP: Greedy randomized adaptive search
procedures,” in Wiley Encyclopedia of
Operations Research and Management Science,
J. J. Cochran et al., Ed. John Wiley &
Sons, 2011, vol. 3, pp. 2118-2128. [Online].

Available: |https://mauricio.resende.info/doc/
sgrasp2009.pdf
J. L. Bresina, “Heuristic-biased stochastic

sampling,” in AAAI-96: Thirteenth National
Conference on Artificial Intelligence, Portland,
Oregon, 1996, pp. 271-278. [Online].
Available: https://cdn.aaai.org/ AAAI/1996/
AAAI96-041.pdf

P. Quinn and K. Kunkleman, ‘“Position
areas for artillery (PAA) analysis in

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Page 35 of

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

severely restricted terrain,” Center for
Army Lessons Learned, Fort Leavenworth,
Kansas, Tech. Rep. 24-846, January 2024.
[Online]. Available: https://api.army.mil/e2/c/
downloads/2024/01/25/a8b49alb/24-846-paa-
analysis-jan-22-public.pdf

Carmenta, “Terrain vehicle analysis,” https:
//docs . carmenta . com/ pages/ terrain_vehicle
analysis.html, 2020.

S. Berg, “Terrangtypsschema for skogsarbete,”
Skogforsk (the Forestry Research Institute
of Sweden), 1995. Swedish version online:
https : // www. skogforsk . se / kunskapsbanken /
kunskapsartiklar/ 1995/ terrangtypschema. An
English translation, “Terrain classification
system for forestry work,” can be ordered from
Skogforsk: https://www.skogforsk.se/english.

NATO Standardization Office, NATO Standard
AMSP-06, “Guidance for standards applicable
to the development of Next Generation NATO
Reference Mobility Models (NG-NRMM),”
July 2021. [Online]. Available: https://nso.nato.
int/nso/nsdd/main/standards?search=AMSP-06

Tekpool, “Bit count: Parallel counting — MIT
HAKMEM,” https://tekpool.wordpress.com/
2006/09/25/bit- count- parallel - counting - mit-
hakmem, 2006.

S. E. Anderson, “Counting bit sets,” in
Bit Twiddling Hacks. Stanford, 1997-2005.
[Online]. Available: https://graphics.stanford.
edu/~seander/bithacks.html

M. Xiao and H. Nagamochi, “Exact
algorithms for maximum independent set,”
Information and Computation, vol. 255,
no. 1, pp. 126-146, 2017. [Online]. Available:
https://arxiv.org/abs/1312.6260

T. Akiba and Y. Iwata, “Branch-and-reduce
exponential/FPT algorithms in practice: A case

https://www.cs.ubc.ca/~hutter/previous-earg/EmpAlgReadingGroup/TSP-JohMcg97.pdf
https://www.cs.ubc.ca/~hutter/previous-earg/EmpAlgReadingGroup/TSP-JohMcg97.pdf
https://leeds-faculty.colorado.edu/glover/fred%20pubs/429%20-%20TSP%20-%20problem%20heuristics%20-%20leading%20methods,%20implementations,%20latest%20advances.pdf
https://leeds-faculty.colorado.edu/glover/fred%20pubs/429%20-%20TSP%20-%20problem%20heuristics%20-%20leading%20methods,%20implementations,%20latest%20advances.pdf
https://leeds-faculty.colorado.edu/glover/fred%20pubs/429%20-%20TSP%20-%20problem%20heuristics%20-%20leading%20methods,%20implementations,%20latest%20advances.pdf
https://leeds-faculty.colorado.edu/glover/fred%20pubs/429%20-%20TSP%20-%20problem%20heuristics%20-%20leading%20methods,%20implementations,%20latest%20advances.pdf
https://leeds-faculty.colorado.edu/glover/fred%20pubs/429%20-%20TSP%20-%20problem%20heuristics%20-%20leading%20methods,%20implementations,%20latest%20advances.pdf
https://www.math.uwaterloo.ca/tsp/sweden
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.11
https://ojmo.centre-mersenne.org/articles/10.5802/ojmo.11
https://mauricio.resende.info/doc/sgrasp2009.pdf
https://mauricio.resende.info/doc/sgrasp2009.pdf
https://cdn.aaai.org/AAAI/1996/AAAI96-041.pdf
https://cdn.aaai.org/AAAI/1996/AAAI96-041.pdf
https://api.army.mil/e2/c/downloads/2024/01/25/a8b49a1b/24-846-paa-analysis-jan-22-public.pdf
https://api.army.mil/e2/c/downloads/2024/01/25/a8b49a1b/24-846-paa-analysis-jan-22-public.pdf
https://api.army.mil/e2/c/downloads/2024/01/25/a8b49a1b/24-846-paa-analysis-jan-22-public.pdf
https://docs.carmenta.com/pages/terrain_vehicle_analysis.html
https://docs.carmenta.com/pages/terrain_vehicle_analysis.html
https://docs.carmenta.com/pages/terrain_vehicle_analysis.html
https://www.skogforsk.se/kunskapsbanken/kunskapsartiklar/1995/terrangtypschema
https://www.skogforsk.se/kunskapsbanken/kunskapsartiklar/1995/terrangtypschema
https://www.skogforsk.se/english
https://nso.nato.int/nso/nsdd/main/standards?search=AMSP-06
https://nso.nato.int/nso/nsdd/main/standards?search=AMSP-06
https://tekpool.wordpress.com/2006/09/25/bit-count-parallel-counting-mit-hakmem
https://tekpool.wordpress.com/2006/09/25/bit-count-parallel-counting-mit-hakmem
https://tekpool.wordpress.com/2006/09/25/bit-count-parallel-counting-mit-hakmem
https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
https://arxiv.org/abs/1312.6260

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

study of vertex cover,” Theoretical Computer
Science, vol. 609, pp. 211-225, 2016. [Online].
Available: https://arxiv.org/abs/1411.2680

[24] H. Ayad, “Independent set and vertex cover,’
Lecture notes, http://www.hananayad.com/
teaching/syde423/IndependentSet.pdf, 2008.

[25] J. Dahlum, D. Hespe, S. Lamm, P. Sanders,
C. Schulz, D. Strash, R. F. Werneck, and
R. Williger, “KaMIS — Karlsruhe Maximum In-
dependent Sets,” https://karlsruhemis.github.io.

[26] Y. Shim and M. P. Atkinson, “An analysis
of artillery shoot-and-scoot tactics,” Naval
Research Logistics, vol. 65, pp. 242-274, 2018.
[Online]. Available: https://faculty.nps.edu/
mpatkins/docs/1_ShootScoot_Final.pdf

[27] T. Jonsson Damgaard, M. Rittri, and
P. Franz, “Risk-adaptive rendezvous planning
for resupply missions in the battlefield,”
in Proceedings of the Ground Vehicle
Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI,
Aug. 13-15, 2024. [Online]. Available:
https://ndia- mich.org/1images/events/gvsets/
2024 / papers/ AAIR /4 % 2000PM % 20Risk %
20Adaptive % 20Rendevous % 20Planning %
20for % 20Resupply % 20Missions % 201in %
20the%20Battlefield.pdf

[28] S. Tadelis, Game Theory: An Introduction.
Princeton University Press, 2013.

[29] G. Navarro, “A guided tour to approximate
string matching,” ACM Computing Surveys,
vol. 33, no. 1, pp. 31 — 88, March 2001.
[Online]. Available: https://users.csc.calpoly.
edu/~dekhtyar/570-Fall2011/papers/navarro-
approximate.pdf

[30] Desmos Studio, “Graphing Calculator,” https:
/[[www.desmos.com.

[31] Copernicus Land Monitoring Service,
“CORINE land cover,” https://land.copernicus.
eu/en/products/corine-land-cover.

[32] J. de Ferranti, “Viewfinder Panoramas,” https:
/Iviewfinderpanoramas.org.

[33] HERE Technologies, https://www.here.com.

[34] GeoNames, https://www.geonames.org.

13 CONTACT INFORMATION

Thomas Jonsson Damgaard

Software Engineer
Thomas.JonssonDamgaard @carmenta.com
Carmenta Geospatial Technologies AB
Box 11354

SE-404 28 Gothenburg

SWEDEN

info@carmenta.com
wWww.carmenta.com

14 ACKNOWLEDGMENTS

Our questions on independent sets were kindly
answered by Kenneth Langedal at Heidelberg
University, Peter Sanders at the Karlsruhe Institute of
Technology, and Darren Strash at Hamilton College.

We have also got good advice from the
anonymous reviewers for GVSETS and from our
co-workers Patrik Ellrén, Patrick Franz, Marcus
Lundberg, Tobias Moberg, and Emilie Le Mogl.

The bias function diagrams in Section [6.6] were
made with Desmos [30] and Paint.

We used geodata from the following sources:

— CORINE Land Cover data [31]].

— Elevations from Viewfinder Panoramas [32].
— Roads from HERE Technologies [33]].

— Town names from GeoNames [34].

— Case points from Quinn and Kunkleman [16].

Page 36 of

Optimizing Firing Position Usage for Survivability and Effectiveness

in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

https://arxiv.org/abs/1411.2680
http://www.hananayad.com/teaching/syde423/IndependentSet.pdf
http://www.hananayad.com/teaching/syde423/IndependentSet.pdf
https://karlsruhemis.github.io
https://faculty.nps.edu/mpatkins/docs/1_ShootScoot_Final.pdf
https://faculty.nps.edu/mpatkins/docs/1_ShootScoot_Final.pdf
https://ndia-mich.org/images/events/gvsets/2024/papers/AAIR/4%2000PM%20Risk%20Adaptive%20Rendevous%20Planning%20for%20Resupply%20Missions%20in%20the%20Battlefield.pdf
https://ndia-mich.org/images/events/gvsets/2024/papers/AAIR/4%2000PM%20Risk%20Adaptive%20Rendevous%20Planning%20for%20Resupply%20Missions%20in%20the%20Battlefield.pdf
https://ndia-mich.org/images/events/gvsets/2024/papers/AAIR/4%2000PM%20Risk%20Adaptive%20Rendevous%20Planning%20for%20Resupply%20Missions%20in%20the%20Battlefield.pdf
https://ndia-mich.org/images/events/gvsets/2024/papers/AAIR/4%2000PM%20Risk%20Adaptive%20Rendevous%20Planning%20for%20Resupply%20Missions%20in%20the%20Battlefield.pdf
https://ndia-mich.org/images/events/gvsets/2024/papers/AAIR/4%2000PM%20Risk%20Adaptive%20Rendevous%20Planning%20for%20Resupply%20Missions%20in%20the%20Battlefield.pdf
https://users.csc.calpoly.edu/~dekhtyar/570-Fall2011/papers/navarro-approximate.pdf
https://users.csc.calpoly.edu/~dekhtyar/570-Fall2011/papers/navarro-approximate.pdf
https://users.csc.calpoly.edu/~dekhtyar/570-Fall2011/papers/navarro-approximate.pdf
https://www.desmos.com
https://www.desmos.com
https://land.copernicus.eu/en/products/corine-land-cover
https://land.copernicus.eu/en/products/corine-land-cover
https://viewfinderpanoramas.org
https://viewfinderpanoramas.org
https://www.here.com
https://www.geonames.org
www.carmenta.com

Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

15 NOTATION

a,b, .., t Names of the 20 positions in TAP instance W-20.
A B, .., T Names of the 20 positions in TAP instances K-20 and D-20.

b Base of an exponential bias function.

c Cost of leg (travel time in seconds).

d Normalized cost of leg.

d Degree of a polynomial bias function.

D, q Positions in a general TAP instance.

R(p) The risk circle around the position p.

r Rank of leg in a list of legs sorted by cost.
U, U, W Nodes in a general graph.

W, o Parameters of a Gaussian bias function.

16 ACRONYMS

A* Algorithm for single-pair shortest path problem [7].
CORINE Coordination of Information on the Environment,
a European land-cover dataset (Section .
D-20 Eastern TAP instance, starting from D (Section .
D-17 Reduced version of D-20 with the same optimal solution (Section .

ExpRankRN Exponential Rank Random Neighbor algorithm (Section .
GaussCostRN Gaussian Cost Random Neighbor algorithm (Section .

K-20 Eastern TAP instance, starting from K (Section .
K-17 Reduced version of K-20 with the same optimal solution (Section .

MIS-blocker ~ Maximum-independent-set blocker (Section .
MIS-requisite Maximum-independent-set requisite (Section .

NN Nearest Neighbor algorithm (Section .
NP-hard For NP-hard problems, optimal solutions cannot be found in

polynomial time if P # NP as is widely believed ([8, chapter 34]).
PolyCostRN Polynomial Cost Random Neighbor algorithm (Section .

RN Random Neighbor algorithm (Section .

TAP Traveling Artilleryman Problem (Section .

TSP Traveling Salesman Problem (Section .

W-20 Western TAP instance, starting from a (Section .

W-15 Reduced version of W-20 with the same optimal solution (Section .

Page 37 of

Optimizing Firing Position Usage for Survivability and Effectiveness
in Artillery Shoot-and-Scoot Tactics, Jonsson Damgaard et al.

	Introduction
	Shoot-And-Scoot Tactics
	Background
	Purpose
	Limitations
	How this Paper is Organized

	Graph Theory
	How Graphs will be Used in this Paper

	Traveling Artilleryman Problem
	Input
	Output
	The Risk-Circle Constraint
	Ranking Valid Solutions
	Allowing any Start Position
	About Risk Circles

	The Traveling Salesman Problem
	Brute-force Search for TSP
	Sophisticated Algorithms for TSP
	The Greedy Algorithm for TSP
	Nearest Neighbor for TSP

	Basic TAP Algorithms
	Nearest Neighbor for TAP
	Random Neighbor for TAP

	Experiments with TAP Algorithms
	Problem Examples
	Resolution and Computation Time
	Should we Precompute Leg Costs?
	Overgreedy Lower Bounds
	Trying Nearest Neighbor
	Trying Random Neighbor

	Conflicting Positions
	Independent Sets in Graphs
	The Conflict Graph of TAP
	Finding the Independence Number
	Remove Blocking Positions
	Finding all Maximum Independent Sets

	Solving a Traveling Artilleryman Problem
	Related Work
	Finding Good Position Areas
	Mission Support using a Markov Chain

	Future work
	Better Algorithms
	Using Brute-force Search to Find an Optimal Solution
	Soft Risk Circles
	Mixed Strategy

	Conclusions
	Lessons Learned
	Local Search

	References
	Contact Information
	Acknowledgments
	Notation
	Acronyms

